Flag Differential Calculus> find dy/dx when y=x^(cos x) + (sin x)^ ta...
question mark

find dy/dx when
y=x^(cos x) + (sin x)^ tan x

taniska , 10 Years ago
Grade 12
anser 2 Answers
Rinkoo Gupta

Last Activity: 10 Years ago

Let y1=xcosx

taking log on boths ides, we get

logy1=cosx.logx

now diff.w.r.to x , we get

(1/y1)dy1/dx=cosx.(1/x)+(logx).(-sinx)

dy1/dx=y1[(cosx)/x-sinx.(logx)]

=xcosx[(cosx)/x –sinx .logx]

let y2=sinxtanx

taking log on both sides, we get

logy2=tanxlogsinx

diff. w.r. to x , get

(1/y2)dy2/dx=tanx.(1/sinx).cosx+logsinx.sec2x

dy2/dx=sinxtanx[1+sec2x . logsinx]

Hence dy/dx = xcosx[(cosx)/x –sinx .logx]+ sinxtanx[1+sec2x . logsinx]

Thanks & Regards

Rinkoo Gupta

askIITians Faculty

Kushagra Madhukar

Last Activity: 4 Years ago

Dear student,
Please find the solution to your problem.
 
Let u = xcosx
taking log on boths ides, we get
logu = cosx.logx
now diff.w.r.to x , we get
(1/u)du/dx = cosx.(1/x) + (logx).(–sinx)
du/dx = u[(cosx)/x – sinx.(logx)]
= xcosx[(cosx)/x – sinx.logx]
 
let v = sinxtanx
taking log on both sides, we get
logv = tanx.log(sinx)
diff. w.r. to x , get
(1/v)dv/dx = tanx.(1/sinx).cosx + logsinx.sec2x
dv/dx = sinxtanx[1 + sec2x.logsinx]
 
Hence,
dy/dx = du/dx + dv/dx
         = xcosx[(cosx)/x – sinx .logx] + sinxtanx[1 + sec2x.logsinx]
 
Thanks and regards,
Kushagra

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free