Kushagra Madhukar
Last Activity: 4 Years ago
Dear student,
Please find the solution to your problem.
Let u = xcosx
taking log on boths ides, we get
logu = cosx.logx
now diff.w.r.to x , we get
(1/u)du/dx = cosx.(1/x) + (logx).(–sinx)
du/dx = u[(cosx)/x – sinx.(logx)]
= xcosx[(cosx)/x – sinx.logx]
let v = sinxtanx
taking log on both sides, we get
logv = tanx.log(sinx)
diff. w.r. to x , get
(1/v)dv/dx = tanx.(1/sinx).cosx + logsinx.sec2x
dv/dx = sinxtanx[1 + sec2x.logsinx]
Hence,
dy/dx = du/dx + dv/dx
= xcosx[(cosx)/x – sinx .logx] + sinxtanx[1 + sec2x.logsinx]
Thanks and regards,
Kushagra