Flag Differential Calculus> find dy/dx when y= (sin^-1 (x))^x + x^x...
question mark

find dy/dx when
y=(sin^-1 (x))^x + x^x

taniska , 11 Years ago
Grade 12
anser 1 Answers
Jitender Singh
Ans:
Hello Student,
Please find answer to your question below

y = (sin^{-1}x)^{x} + x^{x}
y = e^{log(sin^{-1}x)^{x}} + e^{log(x)^{x}}
y = e^{xlog(sin^{-1}x)} + e^{xlog(x)}
Now simply apply the chain rule
u_{1} = xlog(sin^{-1}x), u_{2} = xlog(x)
y = e^{xlog(sin^{-1}x)}.(log(sin^{-1}x)+x.\frac{1}{sin^{-1}x}.\frac{1}{\sqrt{1-x^{2}}}) + e^{xlog(x)}(log(x) + x.\frac{1}{x})y = e^{xlog(sin^{-1}x)}.(log(sin^{-1}x)+\frac{x}{sin^{-1}x.\sqrt{1-x^{2}}}) + e^{xlog(x)}(log(x) + 1)
y = (sin^{-1}x)^{x}(log(sin^{-1}x)+\frac{x}{sin^{-1}x.\sqrt{1-x^{2}}}) + x^{x}.(log(x) + 1)y = (sin^{-1}x)^{x}.(log(sin^{-1}x)+\frac{x}{sin^{-1}x.\sqrt{1-x^{2}}}) + x^{x}.(log(x) + 1)y = (sin^{-1}x)^{x}.(log(sin^{-1}x)+\frac{x}{sin^{-1}x.\sqrt{1-x^{2}}}) + x^{x}.(1 + log(x))
Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments