Flag Differential Calculus> continuity...
question mark

1. If f(x),g(x),h(x) are continuous for all x belongs to 'R'. and

h(x)=Lt n→∞ f(x)+x2ng(x)/1+x2n , f(1)/g(1)=K, f(-1)/g(-1)=L then k+L=?

2. A and B are two fixed points on fixed circle and 'p' is a moving point on the above circle,angleAPB=60 , AB=8, range of PA*PB is ?

3. The population of a country increases by 2% per year.In 100 years population increases by 'p' times then [p]=? ([.] denotes greatest integer function)




sindhuja P , 16 Years ago
Grade 11
anser 1 Answers
Jitender Singh
Ans:
3.
Population increases by 2% every year. Let ‘p’ be the population at any time & p0be the initial population.
Given:
\frac{dp}{dt} = .02p
\int \frac{dp}{p} = \int .02dt
\int_{p_{0}}^{p} \frac{dp}{p} = \int_{0}^{100} .02dt
(lnp)_{p_{0}}^{p} = (.02t)_{0}^{100}
ln\frac{p}{p_{0}} = (.02.100) = 2
p = p_{0}e^{2}
Increase in the population:
p - p_{0} = p_{0} e^{2} -p_{0} = p_{0} (e^{2}-1)
[e^{2}-1] = [2.718^{2}-1] = [6.3875] = 6
3.
What is the range. Its not clear. Please rewrite this part again.
1.
h(x) = \lim_{n\rightarrow \infty }(f(x) + \frac{x^{2n}.g(x)}{1+x^{2n}})
Since functions h(x), f(x) & g(x) are continuous in R. There limit should exist at -1 & 1.
Limit at x =1
LHL = RHL
\lim_{x\rightarrow 1^{-}}h(x) = \lim_{x\rightarrow 1^{+}}h(x)
LHL = \lim_{n\rightarrow \infty }\lim_{h\rightarrow 0}(f(1-h)+\frac{g(1-h).(1-h)^{2n}}{1+(1-h)^{2n}})
LHL = f(1)
RHL = \lim_{n\rightarrow \infty }\lim_{h\rightarrow 0}(f(1+h)+\frac{g(1+h).(1+h)^{2n}}{1+(1+h)^{2n}})
RHL = f(1) + g(1)
LHL =RHL
f(1) = f(1)+g(1)
\Rightarrow g(1) = 0
Limit at x = -1
LHL = \lim_{n\rightarrow \infty }\lim_{h\rightarrow 0}(f(-1-h)+\frac{g(-1-h).(-1-h)^{2n}}{1+(-1-h)^{2n}})
LHL = \lim_{n\rightarrow \infty }\lim_{h\rightarrow 0}(f(-1-h)+\frac{g(-1-h).(1+h)^{2n}}{1+(1+h)^{2n}})
LHL = f(-1) + g(-1)
RHL = \lim_{n\rightarrow \infty }\lim_{h\rightarrow 0}(f(-1+h)+\frac{g(-1+h).(-1+h)^{2n}}{1+(-1+h)^{2n}})
RHL = \lim_{n\rightarrow \infty }\lim_{h\rightarrow 0}(f(-1+h)+\frac{g(-1+h).(1-h)^{2n}}{1+(1-h)^{2n}})
RHL = f(-1)
LHL=RHL
\Rightarrow g(-1) = 0
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments