Join now for JEE/NEET and also prepare for Boards Join now for JEE/NEET and also prepare for Boards. Register Now
Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
Q.1. Find Limit x---->0 8/x 8 [1-cosx 2 /2 -cosx 2 /4 +cosx 2 /2 .cosx 2 /4] Q.1. Find Limitx---->0 8/x8[1-cosx2/2 -cosx2/4 +cosx2/2 .cosx2/4]
Q.1. Find Limitx---->0 8/x8[1-cosx2/2 -cosx2/4 +cosx2/2 .cosx2/4]
Limitx---->08/x8[(1-cosx2/2)(1-cosx2/4)]=Limitx--->08[(1-cosx2/2)/x4][(1-cosx2/4)/x4] =Limitx---->08[2(sinx2/4)2/x4][2(sinx2/8)2/x4]=Limitx---->032[(sinx2/4)/4(x2/4)]2[(sinx2/8)/8(x2/8)]2 =Limitx--->032/(4282) [(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2 =1/32*Limitx---->0[(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2 =1/32 Here i used following formulas: 1-cosx=2sin2(x/2) Limity--->0siny/y = 1 [replace y by x2/4 and x2/8 to get a new result which is used in solving above problem...]
Limitx---->08/x8[(1-cosx2/2)(1-cosx2/4)]=Limitx--->08[(1-cosx2/2)/x4][(1-cosx2/4)/x4]
=Limitx---->08[2(sinx2/4)2/x4][2(sinx2/8)2/x4]=Limitx---->032[(sinx2/4)/4(x2/4)]2[(sinx2/8)/8(x2/8)]2
=Limitx--->032/(4282) [(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2 =1/32*Limitx---->0[(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2
=1/32
Here i used following formulas:
1-cosx=2sin2(x/2)
Limity--->0siny/y = 1 [replace y by x2/4 and x2/8 to get a new result which is used in solving above problem...]
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -