Flag Differential Calculus> Limit...
question mark

Q.1. Find Limitx---->0 8/x8[1-cosx2/2 -cosx2/4 +cosx2/2 .cosx2/4]

Vinay Arya , 16 Years ago
Grade 12
anser 1 Answers
askIITiansexpert nagesh

 

Limitx---->08/x8[(1-cosx2/2)(1-cosx2/4)]=Limitx--->08[(1-cosx2/2)/x4][(1-cosx2/4)/x4]

=Limitx---->08[2(sinx2/4)2/x4][2(sinx2/8)2/x4]=Limitx---->032[(sinx2/4)/4(x2/4)]2[(sinx2/8)/8(x2/8)]2

=Limitx--->032/(4282) [(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2  =1/32*Limitx---->0[(sinx2/4)/(x2/4)]2[(sinx2/8)/(x2/8)]2 

=1/32

Here i used following formulas:

1-cosx=2sin2(x/2)

Limity--->0siny/y = 1 [replace y by x2/4 and x2/8 to get a new result which is used in solving above problem...]

 

 

 

Last Activity: 16 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments