Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
The root(s) of the equation (log2 x4)^1/2 +4log4(2/x)^1/2=2 lie in the interval (a)(-200,-100) b. (-100,0) (c) (0,100) d. (100,200)
The root(s) of the equation (log2 x4)^1/2 +4log4(2/x)^1/2=2 lie in the interval
(a)(-200,-100)
b. (-100,0)
(c) (0,100)
d. (100,200)
Hi
By the rules of logs, logabc = c logab and logab c = (1/b) logac
Applying these rules, we get
log2x4 = 4 log2x
Also, log4(2/x)1/2 = (1/2) log4(2/x)
= (1/2) log22(2/x) = (1/2)(1/2) log2(2/x)
= (1/4) log2(2/x) = (1/4)[log22 - log2x] = (1/4)(1-y)
[Where y = log2(x)]
So the given equation becomes
(4 log(x))1/2 + 4(1/4)(1-y) = 2
or, (4y)1/2 + (1-y) = 2
Let y = u2.
Now it becomes
2u + (1-u2) = 2
or u2-2u+1 = 0
or (u-1)2 = 0
Therefore u = 1.
So, y = u2 = 1 and hence, log2(x) = 1.
So, the solution is x=2, which lies in the interval specified by option C
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Win Gift vouchers upto Rs 500/-
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !