#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# if y= 1+(a/x-a)+(bx/(x-a)(x-b))+(cx^2/(x-a)(x-b)(x-c)) than show that dy/dx=y/x[(a/a-x)+(b/b-x)+(c/c-x)].............

10 years ago

[a/(x-a)]+1=x/(x-a)
[bx/(x-b)(x-c)]+x/(x-a)=x/(x-a)[b/(x-b)+1]=x2/(x-a)(x-b)
So y={cx^2/ (x-a) (x-b) (x-c)} +x2/(x-a)(x-b)=x2/((x-a)(x-c))[c/(x-c)+1]
y=x3/(x-a)(x-b)(x-c)
logy=3logx-log(x-a)-log(x-b)-log(x-c)
y1/y=3/x+1/(a-x)+1/(b-x)+1/(c-x)
y1/y=[1/x-1/(x-a)]+[1/x-1/x-b]+[1/x-1/x-c]=1/x ( a/a-x + b/ b-x+ c/c-x)

All the best.

Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.

Sagar Singh

B.Tech, IIT Delhi

10 years ago

y = 1 + a/(x-a) +bx/(x-a)(x-b) + cx2/(x-a)(x-b)(x-c)

breaking into different  functions

y = 1 +    f(x)1  +       f(x)2       +        f(x)3

f(x)1=a/(x-a)    ,        f(x)2 =bx/(x-a)(x-b)   &   f(x)3 =cx2 /(x-a)(x-b)(x-c)

now

dy/dx= d/dx(1) + d/dx(f(x)1) +d/dx(f(x)2) +d/dx(f(x)3) ....................................1

now separatly differentiatiating f(x)1 , f(x)2  , f(x)3  by taking log

d/dx[log(f(x)1)]  =  d/dx(loga/x-a)

d/dx(f(x)1/f(x)1 = d/dx(loga - log(x-a) )

d/dx(f(x)1)=(-1/x-a)(f(x)1

d/dx(f(x)1) =    -a/(x-a)2

now separatly differentiate each of these and put in eq 1 ,u will get the required result