 # if y= 1+(a/x-a)+(bx/(x-a)(x-b))+(cx^2/(x-a)(x-b)(x-c)) than show that dy/dx=y/x[(a/a-x)+(b/b-x)+(c/c-x)].............

12 years ago

[a/(x-a)]+1=x/(x-a)
[bx/(x-b)(x-c)]+x/(x-a)=x/(x-a)[b/(x-b)+1]=x2/(x-a)(x-b)
So y={cx^2/ (x-a) (x-b) (x-c)} +x2/(x-a)(x-b)=x2/((x-a)(x-c))[c/(x-c)+1]
y=x3/(x-a)(x-b)(x-c)
logy=3logx-log(x-a)-log(x-b)-log(x-c)
y1/y=3/x+1/(a-x)+1/(b-x)+1/(c-x)
y1/y=[1/x-1/(x-a)]+[1/x-1/x-b]+[1/x-1/x-c]=1/x ( a/a-x + b/ b-x+ c/c-x)

All the best.

Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.

Sagar Singh

B.Tech, IIT Delhi

12 years ago

y = 1 + a/(x-a) +bx/(x-a)(x-b) + cx2/(x-a)(x-b)(x-c)

breaking into different  functions

y = 1 +    f(x)1  +       f(x)2       +        f(x)3

f(x)1=a/(x-a)    ,        f(x)2 =bx/(x-a)(x-b)   &   f(x)3 =cx2 /(x-a)(x-b)(x-c)

now

dy/dx= d/dx(1) + d/dx(f(x)1) +d/dx(f(x)2) +d/dx(f(x)3) ....................................1

now separatly differentiatiating f(x)1 , f(x)2  , f(x)3  by taking log

d/dx[log(f(x)1)]  =  d/dx(loga/x-a)

d/dx(f(x)1/f(x)1 = d/dx(loga - log(x-a) )

d/dx(f(x)1)=(-1/x-a)(f(x)1

d/dx(f(x)1) =    -a/(x-a)2

now separatly differentiate each of these and put in eq 1 ,u will get the required result