Flag Differential Calculus> Need a solution for this problem...
question mark

if y= 1+(a/x-a)+(bx/(x-a)(x-b))+(cx^2/(x-a)(x-b)(x-c)) than show that dy/dx=y/x[(a/a-x)+(b/b-x)+(c/c-x)].............

PRADEEP KUMAR , 14 Years ago
Grade
anser 2 Answers
SAGAR SINGH - IIT DELHI

Last Activity: 14 Years ago

Dear pradeep,

[a/(x-a)]+1=x/(x-a)
[bx/(x-b)(x-c)]+x/(x-a)=x/(x-a)[b/(x-b)+1]=x2/(x-a)(x-b)
So y={cx^2/ (x-a) (x-b) (x-c)} +x2/(x-a)(x-b)=x2/((x-a)(x-c))[c/(x-c)+1]
y=x3/(x-a)(x-b)(x-c)
logy=3logx-log(x-a)-log(x-b)-log(x-c)
y1/y=3/x+1/(a-x)+1/(b-x)+1/(c-x)
y1/y=[1/x-1/(x-a)]+[1/x-1/x-b]+[1/x-1/x-c]=1/x ( a/a-x + b/ b-x+ c/c-x)

Please feel free to ask your queries here. We are all IITians and here to help you in your IIT JEE preparation.

All the best.

Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.

Now you score 5+15 POINTS by uploading your Pic and Downloading the Askiitians Toolbar  respectively : Click here to download the toolbar..

 

Askiitians Expert

Sagar Singh

B.Tech, IIT Delhi

vikas askiitian expert

Last Activity: 14 Years ago

y = 1 + a/(x-a) +bx/(x-a)(x-b) + cx2/(x-a)(x-b)(x-c)

breaking into different  functions

 

y = 1 +    f(x)1  +       f(x)2       +        f(x)3       

 

f(x)1=a/(x-a)    ,        f(x)2 =bx/(x-a)(x-b)   &   f(x)3 =cx2 /(x-a)(x-b)(x-c)

now

          dy/dx= d/dx(1) + d/dx(f(x)1) +d/dx(f(x)2) +d/dx(f(x)3) ....................................1

now separatly differentiatiating f(x)1 , f(x)2  , f(x)3  by taking log

  (taking log in both sides)

          d/dx[log(f(x)1)]  =  d/dx(loga/x-a)

                d/dx(f(x)1/f(x)1 = d/dx(loga - log(x-a) )                 

 

                     d/dx(f(x)1)=(-1/x-a)(f(x)1

                       d/dx(f(x)1) =    -a/(x-a)2

now separatly differentiate each of these and put in eq 1 ,u will get the required result

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments