Flag Differential Calculus> plzzzzzz do dis...
question mark

For interval x € [-1.0) , f(x)=x-1 & for interval x€ [0,1] , f(x)= .x^2

g(x) = sin x

h(x) = f(|g(x)|) + |f(g(x))|

Using the above data, show that h(x) is discontinuous at 0 in the interval [-1,1] .

Vivek Nigam , 15 Years ago
Grade
anser 1 Answers
Anil Pannikar AskiitiansExpert-IITB

Last Activity: 15 Years ago

Dear Vivek,

 

Remember -                               | x,  x≥0
                                  |x| =      
                                               | -x,  x<0       and   [ mod.(x-y) ≥ mod. x - mod. y ]

For x€ [0,1] , f(x)= .x^2 so,  RHL : h(x) =  (mod. sinx )2 + mod. sin2x

                                                                     =   sin2x + sin2x

Lim h -0 we have h(x) = 0


for  x €  [-1.0) , f(x)=x-1 LHL : h(x) = mod. sinx -1 + mod. ( sinx -1 )

                                                                  =  - sinx -1 +mod. sinx - mod. 1

                                                                  =    - sinx -1 - sinx -1

lim h - 0 , we have h(x) = -2

 

As, LHL not equal to RHL so discontinous at 0

 

 

Please feel free to ask your queries here. We are all IITians and here to help you in your IIT JEE preparation.

All the best.

Win exciting gifts by answering the questions on Discussion Forum. So help discuss any query on askiitians forum and become an Elite Expert League askiitian.

Now you score 5+15 POINTS by uploading your Pic and Downloading the Askiitians Toolbar  respectively : Click here to download the toolbar..

 

Askiitians Expert

Anil Pannikar

IIT Bombay

 

 

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments