MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12
        
20 meteers of wire is available for fencing of a flower bed in the form of a circular sector .then maximum areaof flower bed is
one month ago

Answers : (1)

Arun
23504 Points
							

Method for maxima or minima -

By second derivative method :

Step\:1.\:\:find\:values\:of\:x\:for\:\frac{dy}{dx}=0

Step\:\:2.\:\:\:x=x_{\circ }\:\:is\:a\:point\:of\:local\:maximum\:if  f``(x)<0\:\:and\:local\:minimum\:if\:f``(x)>0

- wherein

Where\:\:y=f(x)

\frac{dy}{dx}=f`(x)

 

 So,  P= 2r + r \theta = 20 .......(1)\\A = 1/2 r^2 \theta

So , 

\frac{dA }{d\theta }= \frac{d(1/2 r^2\theta )}{d\theta }= \frac{d(1/2 (\frac{20}{2+\theta })^2\theta )}{d\theta }

\left ( from (1) , r = \frac{20}{2+\theta } \right )

\frac{dA }{d\theta } = 200 \frac{d}{d\theta }\left ( \frac{\theta }{(2+\theta )^2} \right )= 200\times \frac{(2+\theta )^2-2\theta (2+\theta )}{(2+\theta )4}= 0

\therefore (2+ \theta )^2 - 2 \theta (2+\theta )= 0 \\\Rightarrow (2+\theta )(2-\theta )=0 \\\rightarrow \theta = \pm 2\\\Rightarrow r = 5

Hence A_{max} = \frac{1}{2}(5)^2(2)= 25

 

hope it helps in case of any query please feel free to ask

one month ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 51 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details