Flag Differential Calculus> 20 meteers of wire is available for fenci...
question mark

20 meteers of wire is available for fencing of a flower bed in the form of a circular sector .then maximum areaof flower bed is

sri harshitha honey , 5 Years ago
Grade 12
anser 1 Answers
Arun

Last Activity: 5 Years ago

Method for maxima or minima -

By second derivative method :

Step\:1.\:\:find\:values\:of\:x\:for\:\frac{dy}{dx}=0

Step\:\:2.\:\:\:x=x_{\circ }\:\:is\:a\:point\:of\:local\:maximum\:if  f``(x)<0\:\:and\:local\:minimum\:if\:f``(x)>0

- wherein

Where\:\:y=f(x)

\frac{dy}{dx}=f`(x)

 

 So,  P= 2r + r \theta = 20 .......(1)\\A = 1/2 r^2 \theta

So , 

\frac{dA }{d\theta }= \frac{d(1/2 r^2\theta )}{d\theta }= \frac{d(1/2 (\frac{20}{2+\theta })^2\theta )}{d\theta }

\left ( from (1) , r = \frac{20}{2+\theta } \right )

\frac{dA }{d\theta } = 200 \frac{d}{d\theta }\left ( \frac{\theta }{(2+\theta )^2} \right )= 200\times \frac{(2+\theta )^2-2\theta (2+\theta )}{(2+\theta )4}= 0

\therefore (2+ \theta )^2 - 2 \theta (2+\theta )= 0 \\\Rightarrow (2+\theta )(2-\theta )=0 \\\rightarrow \theta = \pm 2\\\Rightarrow r = 5

Hence A_{max} = \frac{1}{2}(5)^2(2)= 25

 

hope it helps in case of any query please feel free to ask

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments