Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.

Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: Rs.

There are no items in this cart.
Continue Shopping

in plants, water moves from’ less negative to more negative gradient more negative to less negative gradient same gradients none of these

in plants, water moves from’
  1. less negative to more negative gradient
  2. more negative to less negative gradient
  3. same gradients
  4. none of these

Grade:12th pass

1 Answers

Apoorva Arora IIT Roorkee
askIITians Faculty 181 Points
7 years ago
Unlike animals, plants lack a metabolically active pump like the heart to move fluid in their vascular system. Instead, water movement is passively driven by pressure and chemical potential gradients. The bulk of water absorbed and transported through plants is moved by negative pressure generated by the evaporation of water from the leaves (i.e., transpiration) — this process is commonly referred to as the Cohesion-Tension (C-T) mechanism. This system is able to function because water is "cohesive" — it sticks to itself through forces generated by hydrogen bonding. These hydrogen bonds allow water columns in the plant to sustain substantial tension (up to 30 MPa when water is contained in the minute capillaries found in plants), and helps explain how water can be transported to tree canopies 100 m above the soil surface. The tension part of the C-T mechanism is generated by transpiration. Evaporation inside the leaves occurs predominantly from damp cell wall surfaces surrounded by a network of air spaces. Menisci form at this air-water interface (Figure 4), where apoplastic water contained in the cell wall capillaries is exposed to the air of the sub-stomatal cavity. Driven by the sun's energy to break the hydrogen bonds between molecules, water evaporates from menisci, and the surface tension at this interface pulls water molecules to replace those lost to evaporation. This force is transmitted along the continuous water columns down to the roots, where it causes an influx of water from the soil. Scientists call the continuous water transport pathway theSoilPlantAtmosphereContinuum (SPAC).

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy


Get your questions answered by the expert for free