Flag Analytical Geometry> The points of intersection of the circle ...
question mark

  1. The points of intersection of the circle x2+y2=a2 with the parabolas y2=4ax and y2=-4ax form a rectangle whose area is ?
  2. The point of intersection of the tangents to the parabola y2=4x at the points where the circle (x-3)2+y2=9 meets the parabola ,other than the origin is ?

priya , 9 Years ago
Grade 11
anser 1 Answers
Divyarth

Last Activity: 7 Years ago

x² + y² = a² ----> y² = a² − x² 

Now use this value of y in each of the 2 equations of parabolas to find points of intersection. Since we have both parabolas y² = 4ax and y² = −4ax, we can assume a > 0 

y² = 4ax 
a² − x² = 4ax 
x² + 4ax = a² 
x² + 4ax + 4a² = a² + 4a² 
(x + 2a)² = 5a² 
x + 2a = ± a√5 
x = (−2±√5)a 

Any point on circle has x-coordinate between −a and a 
x = (√5−2)a 

y² = a² − x² = a² − (9−4√5)a² = 4(√5−2)a² 
y = ± 2√(√5−2)a 

-------------------------------- 

y² = −4ax 
a² − x² = −4ax 
x² − 4ax = a² 
x² − 4ax + 4a² = a² + 4a² 
(x − 2a)² = 5a² 
x − 2a = ± a√5 
x = (2±√5)a 

Any point on circle has x-coordinate between −a and a 
x = (2−√5)a 

y² = a² − x² = a² − (9−4√5)a² = 4(√5−2)a² 
y = ± 2√(√5−2)a 

-------------------------------- 

Width of rectangle = difference between x-coordinates: 
(√5−2)a − (2−√5)a = 2(√5−2)a 

Height of rectangle = difference between y-coordinates: 
2√(√5−2)a − (−2√(√5−2)a) = 4√(√5−2)a 

Area of rectangle 
2(√5−2)a * 4√(√5−2)a 
= (2*4) (√5−2)√(√5−2) * a² 
= 8 (√5−2)^(3/2) a²

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free