# if the lines ax + by + c=0,bx+cy+a=0 and cx+ay+b=0 be concurrent thenA.a^3+b^3+c^3-3abc=0 B. a^3+b^3+c^3-abcC.a^3+b^3+c^3+3abc.    D.none of theseSir pls explain the answer in detail. Thanks and regards,Jai

siddharth gupta
28 Points
10 years ago
CONCURRENCY OF LINES IS DETERMINED BY USING the ZERO or NON-ZERO VALUE OF THE DETERMINANT
a1      b1        c1
a2      b2      c2
a3      b3      c3 WHICH IS ZERO FOR CONCUREENT LINES.
WHICH IN THIS CASE IS :
a        b        c
b        c        a
c        a        b
THIS IS A SPECIAL DETERMINANT WHOSE VALUE IS 3abc-a3-b3-c3 and in this case it’s value is 0(lines being concurrent ) therefore a3+b3+c3=3abc.
WITH REGARDS
SIDDHARTH GUPTA
siddharth gupta
28 Points
10 years ago
CONCURRENCY OF LINES IS DETERMINED BY USING the ZERO or NON-ZERO VALUE OF THE DETERMINANT
a1      b1        c1
a2      b2      c2
a3      b3      c3 WHICH IS ZERO FOR CONCUREENT LINES.
WHICH IN THIS CASE IS :
a        b        c
b        c        a
c        a        b
THIS IS A SPECIAL DETERMINANT WHOSE VALUE IS 3abc-a3-b3-c3 and in this case it’s value is 0(lines being concurrent ) therefore a3+b3+c3=3abc.
WITH REGARDS
SIDDHARTH GUPTA
siddharth gupta
28 Points
10 years ago
CONCURRENCY OF LINES IS DETERMINED BY USING the ZERO or NON-ZERO VALUE OF THE DETERMINANT
a1      b1        c1
a2      b2      c2
a3      b3      c3 WHICH IS ZERO FOR CONCUREENT LINES.
WHICH IN THIS CASE IS :
a        b        c
b        c        a
c        a        b
THIS IS A SPECIAL DETERMINANT WHOSE VALUE IS 3abc-a3-b3-c3 and in this case it’s value is 0(lines being concurrent ) therefore a3+b3+c3=3abc.
WITH REGARDS
SIDDHARTH GUPTA
siddharth gupta
28 Points
10 years ago
CONCURRENCY OF LINES IS DETERMINED BY USING the ZERO or NON-ZERO VALUE OF THE DETERMINANT
a1      b1        c1
a2      b2      c2
a3      b3      c3 WHICH IS ZERO FOR CONCUREENT LINES.
WHICH IN THIS CASE IS :
a        b        c
b        c        a
c        a        b
THIS IS A SPECIAL DETERMINANT WHOSE VALUE IS 3abc-a3-b3-c3 and in this case it’s value is 0(lines being concurrent ) therefore a3+b3+c3=3abc.
WITH REGARDS
SIDDHARTH GUPTA
siddharth gupta
28 Points
10 years ago
CONCURRENCY OF LINES IS DETERMINED BY USING the ZERO or NON-ZERO VALUE OF THE DETERMINANT
a1      b1        c1
a2      b2      c2
a3      b3      c3 WHICH IS ZERO FOR CONCUREENT LINES.
WHICH IN THIS CASE IS :
a        b        c
b        c        a
c        a        b
THIS IS A SPECIAL DETERMINANT WHOSE VALUE IS 3abc-a3-b3-c3 and in this case it’s value is 0(lines being concurrent ) therefore a3+b3+c3=3abc.
WITH REGARDS
SIDDHARTH GUPTA