Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

If in a quadrilateral abcd ,ac bisects angle a and c show that ac is perpendicular to bd

If in a quadrilateral abcd ,ac bisects angle a and c show that ac is perpendicular to bd

Grade:9

4 Answers

Pranjal Animesh
21 Points
3 years ago
In quadrilateral ABCD 
    AC and BD are diagonals . So let they intersect at O.
     In triangles ABC and ADC,
              angle CAB = angle CAD
               angle  ACB = angle ACD
               AC = AC
               Therefore, triangles ABC and ADC are congruent.
               NOW,
                       AB = AD (corresponding parts of congruent triangles)
                      In triangle ABD,
                       AB = AD
                      So, triangle ABD is isosceles.
                       As we know the angle bisector of the vertical angle of an isosceles triangle 
                        is also the perpendicular bisector of the base.
                     So AC intersects BD at right angle.
                       so angle AOD = 90o.
Pranjal Animesh
21 Points
3 years ago
In quadrilateral ABCD 
    AC and BD are diagonals . So let they intersect at O.
     In triangles ABC and ADC,
              angle CAB = angle CAD
               angle  ACB = angle ACD
               AC = AC
               Therefore, triangles ABC and ADC are congruent.
               NOW,
                       AB = AD (corresponding parts of congruent triangles)
                      In triangle ABD,
                       AB = AD
                      So, triangle ABD is isosceles.
                       As we know the angle bisector of the vertical angle of an isosceles triangle 
                        is also the perpendicular bisector of the base.
                     So AC intersects BD at right angle
Ayan
15 Points
3 months ago
In triangles ABC and ADC,
 
              angle CAB = angle CAD
 
               angle  ACB = angle ACD
 
               AC = AC
 
               Therefore, triangles ABC and ADC are congruent.
 
               NOW,
 
                       AB = AD (corresponding parts of congruent triangles)
 
                      In triangle ABD,
 
                       AB = AD
 
                      So, triangle ABD is isosceles.
 
                       As we know the angle bisector of the vertical angle of an isosceles triangle 
 
                        is also the perpendicular bisector of the base.
 
                     So AC intersects BD at right angle
 
 
Ram Kushwah
108 Points
3 months ago
Let the diagonals AC and BD intersect at O
In ΔABC and Δ ACD
 
∠DAC= ∠BAC
∠ACD= ∠BCA
AC is common
ΔABC Δ ACD
So AB=AD ( side opposite to equal angles)
 
Now In ΔAOB and Δ AOD
AB=AD ( proved)
∠DAC= ∠BAC ( Given)
AO is common
 
ΔAOB Δ AOD
 
Thus ∠AOB= ∠AOD ( angles opposite to equal sides)
 
But ∠AOB are ∠AOD adjacent angles
So ∠AOB+∠AOD=180°
∠AOB+∠AOB=180°
So ∠AOB=∠AOD=90°
Hence AC is perpendicular to BD
 
 
 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free