Flag Analytical Geometry> If in a quadrilateral abcd ,ac bisects an...
question mark

If in a quadrilateral abcd ,ac bisects angle a and c show that ac is perpendicular to bd

pallavi butte , 7 Years ago
Grade 9
anser 4 Answers
Pranjal Animesh

Last Activity: 7 Years ago

In quadrilateral ABCD 
    AC and BD are diagonals . So let they intersect at O.
     In triangles ABC and ADC,
              angle CAB = angle CAD
               angle  ACB = angle ACD
               AC = AC
               Therefore, triangles ABC and ADC are congruent.
               NOW,
                       AB = AD (corresponding parts of congruent triangles)
                      In triangle ABD,
                       AB = AD
                      So, triangle ABD is isosceles.
                       As we know the angle bisector of the vertical angle of an isosceles triangle 
                        is also the perpendicular bisector of the base.
                     So AC intersects BD at right angle.
                       so angle AOD = 90o.

Pranjal Animesh

Last Activity: 7 Years ago

In quadrilateral ABCD 
    AC and BD are diagonals . So let they intersect at O.
     In triangles ABC and ADC,
              angle CAB = angle CAD
               angle  ACB = angle ACD
               AC = AC
               Therefore, triangles ABC and ADC are congruent.
               NOW,
                       AB = AD (corresponding parts of congruent triangles)
                      In triangle ABD,
                       AB = AD
                      So, triangle ABD is isosceles.
                       As we know the angle bisector of the vertical angle of an isosceles triangle 
                        is also the perpendicular bisector of the base.
                     So AC intersects BD at right angle

Ayan

Last Activity: 4 Years ago

In triangles ABC and ADC,
 
              angle CAB = angle CAD
 
               angle  ACB = angle ACD
 
               AC = AC
 
               Therefore, triangles ABC and ADC are congruent.
 
               NOW,
 
                       AB = AD (corresponding parts of congruent triangles)
 
                      In triangle ABD,
 
                       AB = AD
 
                      So, triangle ABD is isosceles.
 
                       As we know the angle bisector of the vertical angle of an isosceles triangle 
 
                        is also the perpendicular bisector of the base.
 
                     So AC intersects BD at right angle
 
 

Ram Kushwah

Last Activity: 4 Years ago

Let the diagonals AC and BD intersect at O
In ΔABC and Δ ACD
 
∠DAC= ∠BAC
∠ACD= ∠BCA
AC is common
ΔABC Δ ACD
So AB=AD ( side opposite to equal angles)
 
Now In ΔAOB and Δ AOD
AB=AD ( proved)
∠DAC= ∠BAC ( Given)
AO is common
 
ΔAOB Δ AOD
 
Thus ∠AOB= ∠AOD ( angles opposite to equal sides)
 
But ∠AOB are ∠AOD adjacent angles
So ∠AOB+∠AOD=180°
∠AOB+∠AOB=180°
So ∠AOB=∠AOD=90°
Hence AC is perpendicular to BD
 
 
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...