Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Consider a series of `n` concentric circles C(1),C(2),C(3), ....., C(n) with radii r(1),r(2),r(3), ......., r(n) respectively, satisfying r(1)>r(2)>r(3).... > r(n) & r(1)=10. The circles are such that the chord of contact of tangents from any point on Ci to C(i+1) is a tangent to C(i+2) (i=1,2,3,...). Find the value of r(1)+r(2)+r(3)+.........r(infinity), if the angle between the tangents from any point of C(1) to C(2) is 60.

Consider a series of `n` concentric circles C(1),C(2),C(3), ....., C(n) with radii r(1),r(2),r(3), ......., r(n) respectively, satisfying r(1)>r(2)>r(3).... > r(n) & r(1)=10. The circles are such that the chord of contact of tangents from any point on Ci to C(i+1) is a tangent to C(i+2) (i=1,2,3,...). Find the value of r(1)+r(2)+r(3)+.........r(infinity), if the angle between the tangents from any point of C(1) to C(2) is 60.

Grade:12

1 Answers

Arun Kumar IIT Delhi
askIITians Faculty 256 Points
7 years ago
Hello Student,
\\ \\$consider making the diagram yourself$ \\$you must know that c(n) is the innermost circle $ \\$i'm assuming tangents form c(i) to c(i+1) of which chord$ \\$of contact touches c(i+2)$ \\$try to understand the analysis$ \\$consider the triangle made by r(i+1),r(i) and length of tangent $ \\$angle between length of tangent and r(i)=30 $ \\$(since 60^0 is given)$ \\$so $sin30={r(i+1) \over r(i)} \\r(i+1)={r(i) \over 2} \\$consider one more triangle by r(i+1),half of chord and $ \\$r(i+2)$ \\$again $cos(60)={r(i+2) \over r(i+1)} \\=>r(i+2)={r(i+1) \over 2} \\=>$GP with common ratio 1/2$ \\=>sum={a \over 1-r}={10 \over (1-1/2)}=20 \\
Thanks & Regards
Arun Kumar
Btech, IIT Delhi
Askiitians Faculty

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free