Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
LOCUS OF THE CENTRE OF A CIRCLE TOUCHING A GIVEN CIRCLE AND A GIVEN STRAIGHT LINE IS THE PARABOLA y^2=8x.THEN PROVE CENTRE OF THE GIVEN CIRCLE IS(2,0). AND IF RADIUS OF THE GIVEN CIRCLE IS 2 UNITS, THEN GIVEN LINE MUST BE THE TANGENT TO THE CIRCLE.
Dear Abhijeet,
The question is quite simple.
The centre whose locus is y2 = 8x is always at a constant distance with the given a cirle which is equal to the sum of their radius and also at a fixed distance with the straight line which is equal to the radius of the circle.
Therefore the ratio of both the distances is constant which goes with the basic defination of parabola.
Here the point to which the circle is at constant distance is the centre of the given circle which can be found by the graph of parabola which comes out to be the focus of the parabola with co-ordinates (2, 0).
Hence the centre of the given circle is( 2,0 )
Thank you.
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Win Gift vouchers upto Rs 500/-
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !