Anish Singhal
Last Activity: 6 Years ago
We are given the complex number:
e^(e^(-iθ))
To determine its argument, let's break it down step by step.
Step 1: Understanding the Exponential Form
We know that:
e^(-iθ) = cosθ - i sinθ
Thus, our given expression simplifies to:
e^(cosθ - i sinθ)
Step 2: Writing in Polar Form
We express e^(cosθ - i sinθ) as:
e^(cosθ) * e^(-i sinθ)
We can further rewrite this as:
e^(cosθ) * (cos(sinθ) - i sin(sinθ))
Step 3: Identifying the Argument
The argument of a complex number z = r(cosφ + i sinφ) is given by φ.
From our expression:
e^(cosθ) * (cos(sinθ) - i sin(sinθ))
The modulus is e^(cosθ), and the argument is:
sinθ
Final Answer:
The argument of the given complex number is -sinθ.
