Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Water is passed into an inverted cone of base radius 5 cm and depth 10 cm at the rate of (3/2) c.c/sec Find the rate at which the level of water is rising when depth is 4 cm.

Water is passed into an inverted cone of base radius 5 cm and depth 10 cm at the rate of (3/2) c.c/sec Find the rate at which the level of water is rising when depth is 4 cm.

Grade:Upto college level

1 Answers

Jitender Singh IIT Delhi
askIITians Faculty 158 Points
6 years ago
Ans:
Let ‘V’ be the volume of tank, ‘r’ be radius & ‘h’ be the height or depth of the tank.
Volume ‘V’:
V = \frac{1}{3}\pi r^{2}h
Relation b/w ‘h’ & ‘r’:
h = 2r
V = \frac{1}{3}\pi (\frac{h}{2})^{2}h
V = \frac{\pi h^{3}}{24}
\frac{\partial V}{\partial t} = \frac{3\pi h^{2}}{24}.\frac{\partial h}{\partial t}
\frac{\partial V}{\partial t} = \frac{\pi h^{2}}{8}.\frac{\partial h}{\partial t} = \frac{3}{2}(\frac{cm^{3}}{sec})
h = 4cm
\frac{\partial V}{\partial t} = \frac{\pi (4)^{2}}{8}.\frac{\partial h}{\partial t} = \frac{3}{2}(\frac{cm^{3}}{sec})
\frac{\partial h}{\partial t} = \frac{3}{4\pi }(\frac{cm}{sec})
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free