Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Using vector method, prove that if the diagonals of a parallelogram are equal in length, then it is a rectangle.

Using vector method, prove that if the diagonals of a parallelogram are equal in length, then it is
a rectangle.

Grade:Upto college level

1 Answers

SHAIK AASIF AHAMED
askIITians Faculty 74 Points
7 years ago
Hello student,
Using Parallelogram law of vector addition you will find that the diagonals are a+b & a-b if a & b are the vectors which are the sides of the diagonal.
a-b=a+b
Then sq.root(a^2+b^2-2abcosθ)=sq.root(a^2+b^2... (Here θ is the angle between the two vectors)
Simplifing you will get 4abcosθ=0
Since a& b are magnitudes & can never be equal to zero.
Hence
cosθ must be equal to zero i.e. cosθ=0
which is possible only if θ=90 degrees.
Thus Angle between vectors is 90 degrees. So the parallelogram is a rectangle
Thanks and Regards
Shaik Aasif
askIITians faculty

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free