bharat bajaj
Last Activity: 10 Years ago
First, set i = j = k, yields 3.Xii = 0, Hence Xii = 0
For j = k, we have
Xij + Xjj + Xji = 0
So, Xij = -Xji
Now, fix i and j, k goes on from 1 to n,
nXij + Sum(Xjk) + Sum(Xki) = 0
nXij + Sum(Xjk) - Sum(Xik) = 0
now define Ti = Sum(Xik)/n
Therefore, Xij = Ti - Tj
Hence proved
Thanks
Bharat bajaj
IIT Delhi
askiitians faculty