Flag Algebra> Solve the question given in the attached ...
question mark

Solve the question given in the attached image............................................................
..............?.....

Sarvesh , 6 Years ago
Grade 12
anser 1 Answers
Omkar Doiphode
\lim_{x\rightarrow \infty}(1+xe^{\frac{-1}{x^{2}}}sin(\frac{1}{x^{4}}))
= 1 + \lim_{x\rightarrow \infty}(xe^{\frac{-1}{x^{2}}}sin(\frac{1}{x^{4}}))
= 1+ \lim_{x\rightarrow \infty}(xe^{\frac{-1}{x^{2}}}) \lim_{x\rightarrow \infty}(sin(\frac{1}{x^{4}})
=1+0.\lim_{x\rightarrow \infty}(sin(\frac{1}{x^{4}})
 
Note that sine function is a bounded function, i.e. its value will always lie in the interval [-1,1]
\lim_{x\rightarrow \infty}(sin(\frac{1}{x^{4}}) \in [-1,1]
Hence value of given limit is 1+0=1
Last Activity: 6 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments