Flag Algebra> Solve for x the following equation : log ...
question mark

Solve for x the following equation :
log (2x + 3) (6x2 + 23x + 21) = 4 – log(3x + 7) (4x2 + 12x + 9)

Simran Bhatia , 11 Years ago
Grade 11
anser 1 Answers
Aditi Chauhan

Last Activity: 11 Years ago

Hello Student,
Please find the answer to your question
The given equation is
log (2x + 3) (6x2 + 23x + 21)
= 4 - log 3x + 7 ( 4x2 + 12x + 9)
⇒ log (2x + 3) (6x2 + 23x 21)
+ log (3x + 7) (4x2 + 12x + 9) = 4
⇒ log (2x + 3) (2x + 3) (3x + 7) + log (3x + 7) (2x + 3)2 x = 4
⇒ 1 + log (2x + 3) (3x + 7) + 2 log (3x + 7) (2x + 3) = 4
[ Using log ab = a + log b and log an = n log a]
NOTE THIS STEP
⇒ log (2x + 3) (3x + 7) + 2/ log (2x + 3) (3x + 7) = 3 [ Using logab = 1/logba]
Let log log (2x + 3) (3x + 7) = y
⇒ y + 2/y = 3 ⇒ y2 – 3y + 2 = 0
⇒ (y – 1) (y – 2) = 0 ⇒ y = 1, 2
Substituting the values of y in (1), we get
⇒ log (2x + 3) (3x + 7) = 1 and log (2x + 3) (3x + 7) = 2
⇒ 3x + 7 = 2x + 3 and 3x + 7 = (2x + 3)2
⇒ x = -4 and 4x2 + 9x + 2 = 0
⇒ x = -4 and (x + 2) (4x + 1) = 0
⇒ x = -4 and x = 02, x = -1/4
As log ax is defined for x > 0 and a > 0 (a ≠ 1), the possible value of x should satisfy all of the following inequalities :
⇒ 2x + 3 > 0 and 3x + 7 > 0
Also 2x + 3 ≠ 1 and 3x + 7 ≠ 1
Out of x = -4, x = -2 and x = -1/4 only x = -1/4
Satisfies the above inequalities.
So only solutions is x = -1/4.

Thanks
Aditi Chauhan
askIITians Faculty
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments