Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Show that for any triangle with sides a, b and c 3 (ab + bc + ca) 2 When are the first two expressions equal ?

Show that for any triangle with sides a, b and c
3 (ab + bc + ca) 2
When are the first two expressions equal ?

Grade:upto college level

1 Answers

Navjyot Kalra
askIITians Faculty 654 Points
6 years ago
Sol. We know that for sides a, b, c of a ∆
(a – b)2 ≥ 0
⇒ a2 + b2 ≥ 2ab . . . . . . . . . . . . . . . . (1)
Similarly b2 + c2 ≥ 2bc . . . . . . . . . . . . . . . .(2)
C2 + a2 ≥ 2ca . . . . . . . . . . . . . . . . .(3)
Adding the three inequations, we get
2(a2 + b2 + c2 ) ≥ 2(ab + bc + ca)
⇒ a2 + b2 + c2 ≥ ab + bc + ca
Adding 2 (ab + bc + ca) to both sides, we get
(a + b + c)2 ≥ 3(ab + bc + ca)
Or 3 (ab + bc + ca) ≤ (a + b + c)2 . . . . . . . . . . . (A)
Also c < a + b ( triangle inequality)
⇒ c2 < ac + bc . . . . . . . . . . . . . . .(4)
Similarly b2 < ab + bc . . . . . . . . . . . . . . (5)
a2 < ab + ca . . . . . . . . . . . . . . . . (6)
Adding (4), (5) and (6), we get a2 + b2 + c2 < 2(ab + bc + ca)
Adding 2 (ab + bc + ca) to both sides, we get
⇒ (a + b + c)2 < 4 (ab + bc + ca) . . . . . . . . . . (B)
Combining (A) and (B), we get
3(ab + bc + ca) ≤ (a + b + c)2 < 4(ab + bc + ca)
First two expressions will be equal for a = b = c.

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free