Flag Algebra> Show that for any triangle with sides a, ...
question mark

Show that for any triangle with sides a, b and c3 (ab + bc + ca) 2 When are the first two expressions equal ?

Amit Saxena , 10 Years ago
Grade upto college level
anser 1 Answers
Navjyot Kalra

Last Activity: 10 Years ago

Sol. We know that for sides a, b, c of a ∆
(a – b)2 ≥ 0
⇒ a2 + b2 ≥ 2ab . . . . . . . . . . . . . . . . (1)
Similarly b2 + c2 ≥ 2bc . . . . . . . . . . . . . . . .(2)
C2 + a2 ≥ 2ca . . . . . . . . . . . . . . . . .(3)
Adding the three inequations, we get
2(a2 + b2 + c2 ) ≥ 2(ab + bc + ca)
⇒ a2 + b2 + c2 ≥ ab + bc + ca
Adding 2 (ab + bc + ca) to both sides, we get
(a + b + c)2 ≥ 3(ab + bc + ca)
Or 3 (ab + bc + ca) ≤ (a + b + c)2 . . . . . . . . . . . (A)
Also c < a + b ( triangle inequality)
⇒ c2 < ac + bc . . . . . . . . . . . . . . .(4)
Similarly b2 < ab + bc . . . . . . . . . . . . . . (5)
a2 < ab + ca . . . . . . . . . . . . . . . . (6)
Adding (4), (5) and (6), we get a2 + b2 + c2 < 2(ab + bc + ca)
Adding 2 (ab + bc + ca) to both sides, we get
⇒ (a + b + c)2 < 4 (ab + bc + ca) . . . . . . . . . . (B)
Combining (A) and (B), we get
3(ab + bc + ca) ≤ (a + b + c)2 < 4(ab + bc + ca)
First two expressions will be equal for a = b = c.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...