Flag Algebra> Q.18 please step wise answer so that i un...
question mark

Q.18 please step wise answer so that i undestand easily..........

Mehul Verma , 5 Years ago
Grade 12
anser 1 Answers
Vinod Ramakrishnan Eswaran

Last Activity: 5 Years ago

Let the first matrix be A and secound matrix be B So they are asking the product of matrix A and B
 A=\begin{vmatrix} 1 &-1 &2 \\ 0& 2 &-3 \\ 3&-2 & 4 \end{vmatrix}
 
B=\begin{vmatrix} -2 &0 &1 \\ 9& 2 &-3 \\ 6&1 & -2 \end{vmatrix}
 
 
Hence their product would be
 
A*B=\begin{vmatrix} 1 &-1 &2 \\ 0& 2 &-3 \\ 3&-2 & 4 \end{vmatrix}\begin{vmatrix} -2 &0 &1 \\ 9& 2 &-3 \\ 6&1 & -2 \end{vmatrix}
A*B=\begin{vmatrix} 1*-2+-1*9+2*6 &1*0-1*2+2*1 &1*1+3*1+2*-2 \\ 0*-2+2*9+6*-3& 0*0+2*2+1*-3 &0*1-3*2+3*2 \\ 3*-2-9*2+6*4&3*0+2*-2+4*1 & 3*1+2*3-4*2 \end{vmatrix}
 
A*B=\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 &0 \\ 0 & 0 & 1 \end{vmatrix}=I
Since A*B=I,Multiplying with A-1 on both sides we get
B=A-1                          -(1)
Now from the equations we have 
\begin{vmatrix} 1 & -1 & 2 \\ 0 & 2 &-3 \\ 3 & -2 & 4 \end{vmatrix}\begin{vmatrix} x\\ y\\ z \end{vmatrix}=\begin{vmatrix} 1\\ 1\\ 2 \end{vmatrix}
         A                   X           C
 
A*X=C
Applying A-1 on both sides we get
X=A-1C
But from (1)
B=A-1
hence X=BC
X=\begin{vmatrix} -2 & 0 & 1 \\ 9 & 2 &-3 \\ 6 & 1 & -2 \end{vmatrix}\begin{vmatrix} 1\\ 1\\ 2 \end{vmatrix}
 
\begin{vmatrix} x\\ y\\ z \end{vmatrix}=\begin{vmatrix} (-2*1+0*1+1*2)\\ (9*1+2*1-3*2)\\ (6*1+1*1-2*2) \end{vmatrix}
\begin{vmatrix} x\\ y\\ z \end{vmatrix}=\begin{vmatrix} (0)\\ (5)\\ (3) \end{vmatrix}
Hence x=0,y=5,z=3
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...