Flag Algebra> Prove that the area of equilateral triang...
question mark

Prove that the area of equilateral triangle described on side of a square is half the area of equilateral triangle described on its diagonals

Vaibhav gupta , 6 Years ago
Grade 10
anser 1 Answers
Arun

Last Activity: 6 Years ago

Dear Vaibhav
 
I am not attaching any figure.but you can assume related to my answer.
 
Here ABCD is a square, AEB is an equilateral triangle described on the side of the square and DBF is an equilateral triangle described on diagonal BD of  the square.
We have to Prove: Ar(ΔDBF) / Ar(ΔAEB) = 2 / 1 
Proof:  If two equilateral triangles are similar then all angles are = 60 degrees.

Therefore, by AAA similarity criterion , △DBF ~

 △AEB

Ar(ΔDBF) / Ar(ΔAEB) = DB2 /AB2 -----------1

We know that the ratio of the areas of two similar triangles is equal to
the square of the ratio of their corresponding sides i .e.
But, we have DB = √2AB     {But diagonal of square is √2 times of its side} -----2
Substitute equation 2 in equation 1, we get
Ar(ΔDBF) / Ar(ΔAEB) = (√2AB )2 / AB2   = 2 AB2 / AB2 = 2

∴ Area of equilateral triangle described on one side os square is equal to half the area of the equilateral triangle described on one of its diagonals.   
 
 
Regards
Arun (askIITians forum expert)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...