Last Activity: 10 Years ago
Last Activity: 10 Years ago
Hello student,
Please find the answer to your question below
(a)First you need to prove that for positive values of x and y
x/y + y/x >= 2
(x - y)² + 2xy = x² + y²
Divide both sides by xy
(x - y)²/(xy) + 2 = x/y + y/x
Reduce both sides by 2
(x - y)²/(xy) = x/y + y/x - 2
Since LHS is squared and x > 0, y > 0, so xy > 0, so LHS nonnegative 0
0 <= x/y + y/x - 2
x/y + y/x >= 2
(a + b)/c + (a + c)/b + (b + c)/a
= a/c + b/c + a/b + c/b + b/a + c/a
= (a/b + b/a) + (a/c + c/a) + (b/c + c/a)
Since a > 0, b > 0, c > 0, they satisfy the above inequality
Thus
(a + b)/c + (a + c)/b + (b + c)/a >= 2 + 2 + 2
(a + b)/c + (a + c)/b + (b + c)/a >= 6
Multiply both sides by abc
(a + b)abc/c + (a + c)abc/b + (b + c)abc/a >= 6abc
(a + b)ab + (a + c)ac + (b + c)bc >= 6abc..............(1)
also we know that as AM>= GM
(a3+b3+c3)/3>=(a3b3c3)1/3
so a3+b3+c3>=3abc...................(2)
Hence from 1 and 2
2(a3+b3+c3)>=bc(b+c)+ca(c+a)+ab(a+b)
(b) from theorem of inequalities
(a0+1+2+b0+1+2+c0+1+2)/3>((a0+b0+c0)/3)((a1+b1+c1)/3)((a2+b2+c2)/3)
Hence (a3+b3+c3)/3>(a+b+c)(a2+b2+c2)/9
(c)As we know AM>HM
(a+b)/2>2ab/a+b
slly(b+c)/2>2bc/b+c
(a+c)/2>2ac/a+c
By adding above 3 equations we get
(bc/b+c)+(ca/c+a)+(ab/a+b)<(a+b+c)/2
(d)As we know that AM>HM
(a+b)/2>2ab/a+b
by reversing lhs and rhs we get
(2/a+b)<(a+b)/2ab
similarly (2/c+a)<(c+a)/2ca
(2/b+c)<(b+c/2bc)
by adding all the above we get
(2/a+b)+(2/b+c)+(2/c+a)<(1/a+1/b+1/c)
Hence a,b,c,d are true
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 1 Year ago
Last Activity: 1 Year ago
Last Activity: 2 Years ago