Flag Algebra> Let the angles A, B, C of a triangle ABC ...
question mark

Let the angles A, B, C of a triangle ABC be in A. P. and let b : c = √3 : √2. Find the angle A.

Simran Bhatia , 11 Years ago
Grade 11
anser 2 Answers
Aditi Chauhan
As the angles A, B, C of ∆ ABC are in AP
∴ Let A = x – d, B = x, C = x + d
But A + B + C = 180° (∠ Sum prop. of ∆)
∴ x – d + x + x + d = 180°
⇒ 3x = 180° ⇒ x = 60° ∴ ∠B = 60°
Now by sine law in ∆ ABC, we have
b/sin B = c/sin C ⇒ sin B/sin C
⇒ √3/√2 = sin 60°/sin C [using b : c = √3 : √2 and ∠B = 60°]
⇒ √3/√2 = √3/2 sin C ⇒ sin C = 1/√2 = sin 45°
∴ ∠C = 45° ⇒ ∠A = 180° - (∠B + ∠C)
= 180° - (60° + 45°) = 75°
Hello Student,
Please find the answer to your question
As the angles A, B, C of ∆ ABC are in AP
∴ Let A = x – d, B = x, C = x + d
But A + B + C = 180° (∠ Sum prop. of ∆)
∴ x – d + x + x + d = 180°
⇒ 3x = 180° ⇒ x = 60° ∴ ∠B = 60°
Now by sine law in ∆ ABC, we have
b/sin B = c/sin C ⇒ sin B/sin C
⇒ √3/√2 = sin 60°/sin C [using b : c = √3 : √2 and ∠B = 60°]
⇒ √3/√2 = √3/2 sin C ⇒ sin C = 1/√2 = sin 45°
∴ ∠C = 45° ⇒ ∠A = 180° - (∠B + ∠C)
= 180° - (60° + 45°) = 75°

Thanks
Aditi Chauhan
askIITians Faculty
Last Activity: 11 Years ago
Rishi Sharma
Hello Student,
Please find below the answer to your question

As the angles A, B, C of ∆ ABC are in AP
∴ Let A = x – d, B = x, C = x + d
But A + B + C = 180° (∠ Sum prop. of ∆)
∴ x – d + x + x + d = 180°
⇒ 3x = 180° ⇒ x = 60° ∴ ∠B = 60°
Now by sine law in ∆ ABC, we have
b/sin B = c/sin C ⇒ sin B/sin C
⇒ √3/√2 = sin 60°/sin C [using b : c = √3 : √2 and ∠B = 60°]
⇒ √3/√2 = √3/2 sin C ⇒ sin C = 1/√2 = sin 45°
∴ ∠C = 45° ⇒ ∠A = 180° - (∠B + ∠C)
= 180° - (60° + 45°) = 75°

Thanks and Regards
Last Activity: 5 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments