Flag Algebra> Let a and b be the roots of equation Ax^2...
question mark

Let a and b be the roots of equation Ax^2+Bx+C=0.Evaluate the value of determinant | 31+a+b1+a^2 +b^2|| 1+a+b.1+a^2+b^21+a^3+b^3|| 1+a^2+b^2.1+a^3+b^3.1+a^4+b^4.|

bhumika gupta , 7 Years ago
Grade 12
anser 1 Answers
mycroft holmes

Last Activity: 7 Years ago

The given determinant can be written as a product:
\begin{vmatrix} 1 & 1 &1 \\ 1 & a& b\\ 1& a^2& b^2 \end{vmatrix} \ \times \begin{vmatrix} 1 & 1 &1 \\ 1 & a& b\\ 1& a^2 & b^2 \end{vmatrix}
 
\begin{vmatrix} 1 & 1 &1 \\ 1 & a& b\\ 1& a^2& b^2 \end{vmatrix} ^2
 
Using the well known expansion for the Vandermonde Determinant, we can evaluate this as (a-b)^2 (a-1)^2(b-1)^2
 
Since a,b are roots of the quadratic Ax2+Bx+C, we have
 
(a-b)^2 = \frac{B^2-4AC}{A^2}
 
and (a-1)^2 (b-1)^2 = [(a-1)(b-1)]^2 = P(1)^2 = (A+B+C)^2
 
Hence given expressions equals
 
\frac{(B^2-4AC)(A+B+C)^2}{A^2}

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...