Flag Algebra> let a and b are the roots of the equation...
question mark

let a and b are the roots of the equation K(x2-x)+ x + 5 = 0 . If K1 and K2 are the two values pf Kfor which the roots a and b arec connected by the relation a/b + b/a = 4/5 . Find the value of K2/K1+ K1/K2 .

saransh , 8 Years ago
Grade 12
anser 1 Answers
Arun

Last Activity: 8 Years ago

Kx^2 + (1 - K)x + 5 = 0 
x^2 + [(1 - K) / K]x + (5 / K) = 0 
And , a and b are the roots of this equation , so 
a + b = -(1 - K) / K = (K - 1) / K ---(#1) 
ab = 5 / K ---(#2) 

Next , from the condition (a/b) + (b/a) = 4/5 , 
(a^2 + b^2) / (ab) = 4/5 
a^2 + b^2 = 4ab / 5 
(a + b)^2 - 2ab = 4ab / 5 ---(#3) 

Substitute (#1) and (#2) into (#3) , 
[(K - 1)^2] / (K^2) - 10 / K = 4 / K 
Multiply both sides by K^2 , 
(K - 1)^2 - 10K = 4K 
K^2 - 2K + 1 - 14K = 0 
K^2 - 16K + 1 = 0 
K = (1/2)(16 ± √252) = 8 ± √63 
k1 = 8 + √63 , k2 = 8 - √63 

Therefore 
(k1/k2)+(k2/k1) 
= (8 + √63) / (8 - √63) + (8 - √63) / (8 + √63) 
= [(8 + √63)^2 + (8 - √63)^2] / [(8 - √63)(8 + √63)] 
= (64 + 16√63 + 63 + 64 - 16√63 + 63) / (64 - 63) 
= 254 / 1 
= 254
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments