Flag Algebra> it is given that complex number z1 and z2...
question mark

it is given that complex number z1 and z2 satisfy |Z1|=2 and |z2|=3 if the included angle of the corrossponding vector is 60° then find value of |z1+z2|÷|z1-z2|

Priyank Kushwah , 8 Years ago
Grade 11
anser 2 Answers
Pratyush Ranjan Roul

Last Activity: 8 Years ago

Ans:   it may be   {133^(1/2)} / {61^(1/2)}  …..............by applying
sunil suthar

Last Activity: 6 Years ago

Using vector law of addition (Of course, we can treat complex numbers as vectors)
 
|z_1 +z_2|^2 = |z_1|^2 + |z_2|^2 +2|z_1||z_2| \cos\theta\\ |z_1 -z_2|^2 = |z_1|^2 + |z_2|^2 -2|z_1||z_2| \cos\theta\\ \text{where}\ \theta\ \text{is the angle between the two complex numbers/vectors}\\ \text{Hence, } \frac{|z_1+z_2|}{|z_1-z_2|}= \sqrt{\frac{|z_1|^2 + |z_2|^2 +2|z_1||z_2| \cos\theta}{|z_1|^2 + |z_2|^2 -2|z_1||z_2| \cos\theta}}\\ = \sqrt\frac{13}{7}\\
 
 
 
\text{Using vector addition} |z_1 +z_2|^2 = |z_1|^2 + |z_2|^2 +2|z_1||z_2| \cos\theta\\ |z_1 -z_2|^2 = |z_1|^2 + |z_2|^2 -2|z_1||z_2| \cos\theta\\ \text{where}\ \theta\ \text{is the angle between the two complex numbers/vectors}\\ \text{Hence, } \frac{|z_1+z_2|}{|z_1-z_2|}= \sqrt{\frac{|z_1|^2 + |z_2|^2 +2|z_1||z_2| \cos\theta}{|z_1|^2 + |z_2|^2 -2|z_1||z_2| \cos\theta}}\\ = \sqrt\frac{19}{7}\\
Regards
SUNIL SUTHAR
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments