×

#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
if in an acute angled triangle ABC,line joining the circumcentre and ortocentre is parallel to side AC then find the value of tanA.tanC

```
2 years ago

Arun
24730 Points
```							Draw the base of the triangle AC and mark its midpoint, D. Draw a perpendicular from D. Somewhere along the perpendicular will be the circumcentre, that is, the centre of the circle that circumscribes the triangle ABC. The position of vertex B has to be such that the perpendicular bisector of AB meets the perpendicular bisector of AC at X, and the perpendicular from vertex C on to AB meets the perpendicular from vertex B on to AC at Y, such that XY is parallel to AC. This is another way of framing the question. No other construction lines are required because the missing perpendiculars are superfluous to solving the problem.Represent the problem graphically. Plot the points A(0,0), B(p,q), C(t,0) where p and q are to be determined and t is an arbitrary constant t=AC. Midpoint of AC is N(t/2,0); midpoint of AB is M(p/2,q/2). AB is a segment of the line y=qx/p. The equation of the bisector of AB: -p/q is its gradient, so y=-px/q+c, where c is found by plugging in M: q/2=-p^2/2q+c, c=q/2+p^2/2q and the perpendicular bisector is a segment of y=q/2+p^2/2q-px/q. Therefore, the coords of X are where this line meets the perpendicular bisector of AC, which is a segment of the line x=t/2. The intersection is X(t/2,q/2+p^2/2q-pt/2q).Now we need to find Y, which must lie on the line x=p, because this is the perpendicular from vertex B on to AC. The perpendicular from vertex C on to AB is parallel to the perpendicular bisector of AB so has the same gradient: -p/q. The equation of the perpendicular from C is y=-px/q+k, where k is found by plugging in C(t,0): 0=-pt/q+k, k=pt/q and y=-px/q+pt/q=p(t-x)/q.The point Y is therefore Y(p,p(t-p)/q).XY is parallel to AC, which means their y coord is the same: q/2+p^2/2q-pt/2q=p(t-p)/q; q^2+p^2-pt=2p(t-p); q^2+3p^2=3pt; q^2=3p(t-p).Also, tanA=q/p and tanC=q/(t-p), so tanA*tanC=q^2/(pt-p^2)=3p(t-p)/(p(t-p))=3.Note that when tanA=tanB=sqrt(3), B is (1/2,sqrt(3)/2), the triangle is equilateral and XY=0 because the circumcentre and orthocentre coincide.
```
2 years ago
mycroft holmes
272 Points
```							Let HD and OE be the perpendiculars from the orthocentre and circumcenter resp. on AC. Then we have HD = 2R cosA cos C and OE = R cos B. Hence 2R cosA cos C = R cos B = -R cos (A+C) = R (sin A sin C – cos A cos C) Dividing by R cos A cos C and you get tan A tan C =2
```
2 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »

### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution

### Course Features

• 101 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions