MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade:
        If G is the centroid of a triangle ABC, then , prove analytically that ∆BCG= ∆CAG= ∆ABG
2 years ago

Answers : (1)

Arun
23340 Points
							

We know that, the median of a triangle divide it into two triangles of equal area.

In ΔABC, AD is the median

∴ ar (ΔABD) = ar (ΔACD)   ...(1)

In ΔGBC, GD is the median.

∴ ar(ΔGBD) = ar(ΔGCD)   ...(2)

Subtracting (2) from (1), we get

ar(ΔABD) – ar(ΔGBD) = ar(ΔACD) – ar(ΔGCD)

∴ ar(ΔAGB) = ar(ΔAGC) ...(3)

Similarly, ar(ΔAGB) = ar(ΔBGC)   ...(4)

From (3) and (4), we get

ar(ΔAGB) = ar(ΔAGC) = ar(ΔBGC)   ...(5)

Now, ar(ΔAGB) + ar(ΔAGC) + ar(ΔBGC) = ar(ΔABC)

⇒ ar(ΔAGB) + ar(ΔAGB) + ar(ΔAGB) = ar(ΔABC)   (Using (5))

⇒ 3ar(ΔAGB) = ar(ΔABC)

⇒ ar(ΔAGB) .......(6)

From (5) and (6), we get

ar(ΔAGB) = ar (ΔAGC) = ar(ΔBGC)

2 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 101 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details