 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

If f;R to R is an odd function such that f(1+x)=1+f(x)and x^2f(1/x)=f(x) where x is not equal to zero find f(x)
If f;R to R is an odd function such that f(1+x)=1+f(x)and x^2f(1/x)=f(x) where x is not equal to zero find f(x)


4 years ago

							With the further assumption that f(x) is continuous, we can prove that f(x) = x is the only function satisfying the given conditions. (otherwise it becomes difficult to deal with transcendental reals). Proof: since the function is odd, we have f(0) = 0 and further f(-x) = -f(x), so it suffices to prove for x>0. By induction, we easily obtain from the 1st condition that f(n) = n for any natural number n Now  Now if x = 2/n with n>2, we have if n = 2k, x = 1/k and hence f(x) =f(1/k) = 1/k = x from the above result. Otherwise n = 2k+1, and f(n/2) = f(k+1/2) = k+f(1/2) = k+1/2 = (2k+1)/2 = n/2. Hence f(2/n) = (2/n)2 (n/2) = 2/n. Now, let us look at x = 3/n, with n>3. If n=3k, then f(x)=x is evident. Else n = 3k+1 and using f(n/3) = f(k+1/3) we get f(x) = xElse n = 3k+2 and f(n/3) = f(k+2/3) and using the result we derived for f(2/n) we again have f(x) = x. So by strong induction, we can prove that f(m/n) = m/n i.e. f(x) = x for any . Now, we take any irrational number x, and consider a sequence of rational numbers {q} that converges to x (just consider the decimal expansion of x for example). By continuity (Heine Borel Theorem) since the  we must have . But we have already proved that  and hence limits are unique, we must have f(x) = x. Thus we have proved that f(x) = x for all x.

4 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Algebra

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 101 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions