Flag Algebra> If alpha is a real root of the equation a...
question mark

If alpha is a real root of the equation ax2+bx+c and beta is a real root of equation -ax2+bx+c.Show that there exists a root gama of the equation (a/2)x2+bx+c which lies between alpha and beta.feiends and experts plz help me.thanks

Ankit Jaiswal , 8 Years ago
Grade 12
anser 7 Answers
Ajay

Last Activity: 8 Years ago

From the question it seems alpha and beta are roots of same equation ax2+bx+c. =0. 
Is this true or mistake in question?

Ankit Jaiswal

Last Activity: 8 Years ago

no alpha is the root

Ajay

Last Activity: 8 Years ago

\large let\quad f(x)=\frac { a }{ 2 } x^{ 2 }+bx+c=0\\ if\quad a\quad root\quad ofequation\quad f(x)=0\quad \quad lies\quad between\quad \alpha \quad and\quad \beta \quad then\quad f(\alpha ).f(\beta )<0.\\ This\quad is\quad easy\quad to\quad visualise\quad if\quad you\quad draw\quad graph\quad for\quad y=f(x).\\ Now\quad f(\alpha ).f(\beta )=\quad \left( \frac { a }{ 2 } \alpha ^{ 2 }+b\alpha +c \right) \left( \frac { a }{ 2 } \beta ^{ 2 }+b\beta +c \right) \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 1 }{ 4 } \left( a\alpha ^{ 2 }+2(b\alpha +c) \right) \left( a\beta ^{ 2 }+2(b\beta +c) \right) ------------(1)\quad \quad \quad \\ Given\quad \alpha \quad is\quad root\quad of\quad equation\quad ax^{ 2 }+bx+c\quad =\quad 0\quad hence\quad a\alpha ^{ 2 }+b\alpha +c=0\\ or\quad b\alpha +c=-a\alpha ^{ 2 }-------------(2)\large Given\quad \beta \quad is\quad root\quad of\quad equation\quad -ax^{ 2 }+bx+c\quad =\quad 0\quad hence\quad -a\beta ^{ 2 }+b\beta +c=0\\ or\quad b\beta +c=a\beta ^{ 2 }-------------------(3)\\ substuting\quad from\quad (2)\quad and\quad (3)\quad into\quad (1)\\ f(\alpha ).f(\beta )\quad =\quad \frac { 1 }{ 4 } \left( a\alpha ^{ 2 }-2a\alpha ^{ 2 } \right) \left( a\beta ^{ 2 }+2a\beta ^{ 2 } \right) \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad -\frac { 3 }{ 2 } { a }^{ 2 }\alpha ^{ 2 }\beta \\ or\quad f(\alpha ).f(\beta )<0\quad which\quad is\quad required\quad condition\\ Hence\quad Proved

Ankit Jaiswal

Last Activity: 8 Years ago

no actually alpha is the roo

Ajay

Last Activity: 8 Years ago

Small Mistake in last para posting again..............................................................................................................
\large f(\alpha ).f(\beta )\quad =\quad \frac { 1 }{ 4 } \left( a\alpha ^{ 2 }-2a\alpha ^{ 2 } \right) \left( a\beta ^{ 2 }+2a\beta ^{ 2 } \right) \quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad =\quad -\frac { 3 }{ 2 } { a }^{ 2 }\alpha ^{ 2 }\beta ^{ 2 }\\ or\quad f(\alpha ).f(\beta )<0\quad which\quad is\quad required\quad condition\\ Hence\quad Proved

mycroft holmes

Last Activity: 8 Years ago

We have a \alpha^2 + b \alpha + c = 0 \implies a \frac{\alpha^2}{2}+b \alpha +c = -a \frac{\alpha^2}{2}
 
Similarly, -a \beta^2 + b \beta + c = 0 \implies a \frac{\beta^2}{2}+b \beta +c = 3a \frac{\beta^2}{2}
 
So if P(x) = a/2 x2+bx +c, then P(\alpha) and P(\beta) are off opposite sign and hence there must exist a root between the two numbers.

bku

Last Activity: 7 Years ago

such a question doesnot exit.......................................................................................................................

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...