Flag Algebra> if a/b+c+b/c+a+c/a+b=1 then find a*a/b+c+...
question mark

if a/b+c+b/c+a+c/a+b=1 then find a*a/b+c+b*b/c+a+c*c/a+b

jairam singh , 7 Years ago
Grade 12th pass
anser 4 Answers
Arun

Last Activity: 7 Years ago

Given relation

a/(b+c)+b/(c+a)+c/(a+b)=1

Multiplying both sides by a+b+c we get (a+b+c!=0)

a(a+b+c)b+c+b(a+b+c)c+a+c(a+b+c)a+b=(a+b+c)=>(a(a+b+c))/(b+c)+(b(a+b+c))/(c+a)+(c(a+b+c))/(a+b)=(a+b+c)

a2b+c+a(b+c)b+c+b2c+a+b(c+a)c+a+c2a+b+c(a+b)a+b=(a+b+c)=>a^2/(b+c)+(a(b+c))/(b+c)+b^2/(c+a)+(b(c+a))/(c+a)+c^2/(a+b)+(c(a+b))/(a+b)=(a+b+c)

a2b+c+a+b2c+a+b+c2a+b+c=(a+b+c)=>a^2/(b+c)+a+b^2/(c+a)+b+c^2/(a+b)+c=(a+b+c)

=>a^2/(b+c)+b^2/(c+a) + c^2/(a+b) = 0

Regards

Arun (askIITians forum expert)

sohel mia

Last Activity: 6 Years ago

We have multiply both sides of it.                                 a(a+b+c) /(b+c) +b(a+b +c) /(c+a) +c(a+b+c) /(a+b) =(a+b+c).                                                              Or,  [{a²+a(b+c)} ÷(b+c)] +[{b²+b(a+c)} ÷(c+a)] +[{c²+c(a+b)}] =(a+b+c)                                                     Or  {a²÷
sohel mia

Last Activity: 6 Years ago

We have multiply both sides of it by (a+b+c).             {a(a+b+c) /(b+c)} +{b(a+b +c)/(a+c)} +{c(a+b+c) /(a+b)}=(a+b+c)                                                            Or, [{a²+a(b+c)}/(b+c)]+[{b²+b(a+c)}/(a+c)]+[{c²+c(a+b)}/(a+b)] =(a+b+c)                                        Or, {a²/(b+c)}+a+{b²/(c+a)}+b+{c²/(a+b)}+c=a+b+c  Or, [{a²/(b+c)}+{b²/(c+a)}+{c²/(a+b)}]+(a+b+c)=(a+b+c).                                                                            At least, [{a²/(b+c)}+{b²/(c+a)}+{c²/(a+b)}] =0 (proved)
 
Rishi Sharma

Last Activity: 5 Years ago

Dear Student,
Please find below the solution to your problem.

We know that
a/(b+c) + b/(c+a) + c/(a+b) −1 = 0 which is equivalent to
a^3 + b^3 + abc + c^3 / (a+b)(a+c)(b+c) = 0
also
= a^2/(b+c) + b^2/(c+a) + c^2/(a+b)
= a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4 /(a+b)(a+c)(b+c) = 0
but
a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4 = (a+b+c)(a^3 + b^3 + abc + c^3)
so
a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4=0
and consequently a^2/(b+c) + b^2/(c+a) + c^2/(a+b) = 0

Thanks and Regards
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments