Rishi Sharma
Last Activity: 5 Years ago
Dear Student,
Please find below the solution to your problem.
We know that
a/(b+c) + b/(c+a) + c/(a+b) −1 = 0 which is equivalent to
a^3 + b^3 + abc + c^3 / (a+b)(a+c)(b+c) = 0
also
= a^2/(b+c) + b^2/(c+a) + c^2/(a+b)
= a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4 /(a+b)(a+c)(b+c) = 0
but
a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4 = (a+b+c)(a^3 + b^3 + abc + c^3)
so
a^4 + a^3b + ab^3 + b^4 + a^3c + a^2bc + ab^2c + b^3c + abc^2 + ac^3 + bc^3 + c^4=0
and consequently a^2/(b+c) + b^2/(c+a) + c^2/(a+b) = 0
Thanks and Regards