if a,b,c are positive real numbers such that loga/(b-c) = logb/(c-a) = logc/(a-b)then proove that - a(b+c)+ b(c+a) + c(a+b) >= 3
- a(a)+ b(b) + c(c) >= 3
loga/(b-c) = logb/(c-a) = logc/(a-b)
then proove that
- a(b+c)+ b(c+a) + c(a+b) >= 3
- a(a)+ b(b) + c(c) >= 3










