Flag Algebra> If a,b,c are distinct positive real nos s...
question mark

If a,b,c are distinct positive real nos such that logba.logca-logaa + logab.logcb-logbb + logac.logbc-logcc = 0,then prove that abc=1.

Anusuya Sahoo , 8 Years ago
Grade 9
anser 1 Answers
gayatri

Last Activity: 8 Years ago

logaa = logbb = logcc = 1 and logba = \frac{log a}{log b}
\frac{(loga)^{2}}{logb \times logc } - 1  + \frac{(logb)^{2}}{loga \times logc } -1 + \frac{(logc)^{2}}{loga \times logb } - 1 = 0   
By making the denominator common and bringing 3 to the LHS of the equation :
 
\frac{(loga)^{3}}{loga \times logb \times logc} + \frac{(logb)^{3}}{loga \times logb \times logc} + \frac{(logc)^{3}}{loga \times logb \times logc} = 3
 
(loga)^{3} + (logb)^{3} + \(logc)^{3} = 3 \times loga\times logb\times logc
\Rightarrow loga + logb + logc =0                    \textbf{}\textbf{[} a^{3} + b^{3}+c^{3} = 3 abc \Rightarrow a+b+c = 0 \textbf{]}}
\Rightarrow log (abc)=0                                       \textbf{[ loga + logb + log c = log (abc)]}
\Rightarrow abc= 1
 
 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free