Flag Algebra> if a^2(b+c), b^2(c+a), c^2(a+b) are in A....
question mark

if a^2(b+c), b^2(c+a), c^2(a+b) are in A.P, prove that either a,b,c are in A.P or ab+bc+ca=0

Kiranchandar , 9 Years ago
Grade 11
anser 2 Answers
Vijay Mukati
Since, a²(b+c), b²(c+a), c²(a+b) ... are in A.P.
So, b²(c+a) - a²(b+c) = c²(a+b) - b²(c+a)
==> b²c + b²a - a²b - a²c = c²a + c²b - b²c - b²a
==>(b²c - a²c) + (b²a - a²b) = (c²a - b²a) + (c²b - b²c)
==>c(b² - a²) + ab(b-a) = a(c² - b²) + bc(c - b)
==>(b-a) [ c(b+a) + ab ] = (c-b) [ a(c+b) + bc ]
==> (b-a)( ab + bc ca ) = (c-b)( ab + bc + ca )

∴ Either : ab + bc + ca = 0
Or : b - a = c - b, i.e., a, b, c are in A.P.

Thanks, Vj
Last Activity: 9 Years ago
mycroft holmes
If a^2 (b+c), b^2(c+a), c^2(a+b) are in AP
 
adding, abc to each term,
 
a^2b+a^2c+abc, b^2c+b^2a+abc, c^2a+c^2b+abc are also in AP
 
i.e. a(ab+bc+ca),b(ab+bc+ca), c(ab+bc+ca) are in AP
 
Now, if ab+bc+ca is non-zero, then dividing by ab+bc+ca, we get a,b,c are in AP
Last Activity: 9 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments