Flag Algebra> if a^2(b+c), b^2(c+a), c^2(a+b) are in A....
question mark

if a^2(b+c), b^2(c+a), c^2(a+b) are in A.P, prove that either a,b,c are in A.P or ab+bc+ca=0

Kiranchandar , 9 Years ago
Grade 11
anser 2 Answers
Vijay Mukati

Last Activity: 9 Years ago

Since, a²(b+c), b²(c+a), c²(a+b) ... are in A.P.
So, b²(c+a) - a²(b+c) = c²(a+b) - b²(c+a)
==> b²c + b²a - a²b - a²c = c²a + c²b - b²c - b²a
==>(b²c - a²c) + (b²a - a²b) = (c²a - b²a) + (c²b - b²c)
==>c(b² - a²) + ab(b-a) = a(c² - b²) + bc(c - b)
==>(b-a) [ c(b+a) + ab ] = (c-b) [ a(c+b) + bc ]
==> (b-a)( ab + bc ca ) = (c-b)( ab + bc + ca )

∴ Either : ab + bc + ca = 0
Or : b - a = c - b, i.e., a, b, c are in A.P.

Thanks, Vj
mycroft holmes

Last Activity: 9 Years ago

If a^2 (b+c), b^2(c+a), c^2(a+b) are in AP
 
adding, abc to each term,
 
a^2b+a^2c+abc, b^2c+b^2a+abc, c^2a+c^2b+abc are also in AP
 
i.e. a(ab+bc+ca),b(ab+bc+ca), c(ab+bc+ca) are in AP
 
Now, if ab+bc+ca is non-zero, then dividing by ab+bc+ca, we get a,b,c are in AP
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments