Flag Algebra> If 1/a+1/b+1/c =1/(a+b+c) then prove that...
question mark

If 1/a+1/b+1/c =1/(a+b+c) then prove that 1/a^3+1/b^3+1/b^3 =1/(a^3+b^3+c^3)=1/(a+b+c)^3

Md Mursalim Saikh , 7 Years ago
Grade 10
anser 1 Answers
Arun
Write u = 1/a, v = 1/b, w = 1/c. Then 1/(a+b+c) = 1/(1/u + 1/v + 1/w) = uvw/(vw + uw + uv).  

By assumption u + v + w = uvw/(uv + uw + vw) ==>  
uvw = (u+v+w)(uv+uw+vw) = u^2v + u^2w + uvw + uv^2 + uvw + v^2w + uvw + uw^2 + vw^2 ==>  
uvw = 3uvw + u^2v+ u^2w + uv^2 + v^2w + uw^2 + vw^2 ==> 
-2uvw = u^2v+ u^2w + uv^2 + v^2w + uw^2 + vw^2 ==> 
(u+v)w^2 + (u^2 + v^2 + 2uv)w +(u^2v+uv^2) = 0 ==> 

w = {-(u+v)^2+/-sqrt((u+v)^4 - 4uv(u+v)^2)}/[2(u+v)] = {-(u+v) +/-(u-v)}/2 = -v or - u.  

Going back to u = 1/a, v = 1/b and w = 1/c, then w = - v or -u means c = - a or - b. 

So 1/a + 1/b + 1/c = 1/(a+b+c) ==> c = -a or - b ==>  
c^3 = -a^3 or - b^3 ==>  
1/a^3 + 1/b^3 + 1/c^3 = 1/(a^3 + b^3 + c^3) {since the c^3 term will cancel either the a^3 or b^3 term on both sides, and you'll be left with say 1/a^3 = 1/a^3}, and we're done. 
 

 
Last Activity: 7 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments