Flag Algebra> Given n 4 n for a fixed positive integer ...
question mark

Given n4 n for a fixed positive integer n ≥ 2, prove that (n + 1)4 n + 1.

Amit Saxena , 11 Years ago
Grade upto college level
anser 1 Answers
Navjyot Kalra
Sol. Given that n4 < 10n for n for a fixed + ve integer n ≥2.
To prove that (n + 1)4 , 10n + 1
Proof : Since n4 < 10n ⇒ 10n4 < 10n + 1 . . . . . . . . . . . . . . . . . . (1)
So it is sufficient to prove that (n + 1)4 < 10n4
Now (n + 1/n)4 = (1 + 1/n)4 ≤ (1 + 1/2)4 [∵ n ≥ 2]
= 81/16 < 10
⇒ (n + 1)4 < 10n4 . . . . . . . . . . . . . . . . . . . . . . . .(2)
From (1) and (2), (n + 1)4 < 10n + 1
Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments