Flag Algebra> Give Brief solution of the question in th...
question mark

Give Brief solution of the question in the attachment.

Rajbir Sehrawat , 5 Years ago
Grade 11
anser 1 Answers
Aditya Gupta

Last Activity: 5 Years ago

from binomial theorem,
(1+x)^100= 100C0 + 100C1*x + 100C2x^2 + 100C3*x^3 + …........
in the above identity, put x= 1, w, w^2 successively (where w and w^2 are the complex cube roots of unity, as we know that roots of z^3= 1 are 1, w, w^2)
so, 2^100= 100C0 + 100C1 + 100C2 + 100C3 + …........
and (1+w)^100= 100C0 + 100C1*w + 100C2w^2 + 100C3*w^3 + …........
and (1+w^2)^100= 100C0 + 100C1*w^2 + 100C2w^4 + 100C3*w^6 + …........
adding these 3 eqns,
2^100 + (1+w)^100 + (1+w^2)^100= 3*100C0 + 100C1*(1+w+w^2) + 100C2*(1+w^2+w^4) + 100C3*(1+1+1) + ….....
or 2^100 + (1+w)^100 + (1+w^2)^100= 3*100C0 + 0 + 0 + 3*100C3 + 0 + …..............(because w^3= 1 and 1+w+w^2= 0)
or  2^100 + (1+w)^100 + (1+w^2)^100= 3(100C0 + 100C3 + …......)
so, 100C0 + 100C3 + ….....= (2^100 + (1+w)^100 + (1+w^2)^100)/3
so, we just need to find value of (1+w)^100 + (1+w^2)^100= ( – w^2)^100 + ( – w)^100 [using 1+w+w^2= 0]
= w^200 + w^100= w^100(1+w^100)= w^100(1+(w^3)^33*w)= w^100(1+w)= w^100( – w^2)= – w^102= – (w^3)^34= – 1
so, final ans is (2^100 – 1)/3
kindly approve :=)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...