Flag Algebra> A vertical tower PQ stands at a point P. ...
question mark

A vertical tower PQ stands at a point P. Points A and B are located to the South and East of P respectively. M is the mid point ofAB PAM is an equilateral triangle; and N is the foot of the perpendicular from P on AB. Let AN = 20 meters and the angle of elevation of the top of the tower at N is tan-1 (2). Determine the height of the tower and the angles of elevation of the top of the tower at A and B.

Hrishant Goswami , 10 Years ago
Grade 10
anser 1 Answers
Jitender Pal

Last Activity: 10 Years ago

Hello Student,
Please find the answer to your question
Let PQ = h
As A and B are located to the south and east of P respectively,
∴ ∠APB = 90°. M is mid pt of AB. PAM is an equilateral ∆
235-874_12345.png
∴ ∠ APM = 60° :
Also PN ⊥ AB, therefore AN = NM = 20 m
⇒ AP = 40 m
Let angles of elevation of top of the tower from A, N and B be α, θ and β respectively. ATQ, tan θ = 2
In ∆ PQN tan θ = PQ/PN
⇒ 2 = h/PN ⇒ PN = h/2 . . . . . . . . . . . . . . . . . . . (1)
Also in ∆APM, ∠APM = 60° (being equilateral ∆) and PN is altitude ∴ ∠APN = 30°(as in equilateral ∆ altitude bisects the vertical angle.
∴ In ∆APN tan ∠ APN = AN/PN
⇒ tan 30°= 20 / h/2 [Using eq. (1)]
⇒ h/2√3 = 20 ⇒ h = 40√3m.
In ∆APQ tan α = h/AP ⇒ tan α = 40√3/40 = √3
⇒ α = 60° Also in ∆ABQ tan β = h/PB but in rt ∆PNB
PB = \sqrt{PN^2+NB^2} = \sqrt{(20\sqrt{3})^2+(60)^2}
∴ PB = √1200 + 3600 = √4800 = 40 √3
∴ tan β = 40 √3/40 √3 ⇒ tan β = 1 ⇒ β = 45°
Thus h = 40 √3m ; ∠’s of elevation are 60°, 45°

Thanks
Jitender Pal
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...