Flag Algebra> (a^4 + b^4) x^2 +4abcd x +(c^4+d^4) =0 pr...
question mark

(a^4 + b^4) x^2 +4abcd x +(c^4+d^4) =0 prove that the roots of the equation cannot be different if real

medha , 8 Years ago
Grade 12th pass
anser 2 Answers
Nicho priyatham

Last Activity: 8 Years ago

Given Roots are real so discriminent >0 
(4abcd)2-4(a2+b2)(c2+d2)>0
so 4(abcd)>(a2+b2)(c2+d2)
 ((a/b)2+(b/a)2)((c/d)2+(d/c)2)4 .........(1)
 
from A.M>G.M we get 
so we get (a/b)2+(b/a)2)>2    and     ((c/d)2+(d/c)2>2
so   ((a/b)2+(b/a)2)((c/d)2+(d/c)2) >4 …......(2)
from equation (1) and (2)
we get  ((a/b)2+(b/a)2)((c/d)2+(d/c)2) =4 
so only possible if  a=b and c=d   
which gives discriminent =0 hence equal if real
plz APPROVE if usefull 
incase of any doubts drop them down in Answer box
 

Vikas TU

Last Activity: 8 Years ago

Calculate the Discriminant ,
D = (4abcd)^2 – 4*(a^4 + b^4)*(c^4+d^4)
 
Take a=b=c=d = 1
D = zero for all abcd being real.
Take a = b =c = d= ½
D
U can take any real no. disitinct for abcd
D
Hence D is never positive.
Hence roots never be positive.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...