Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

A is a set conaining n elements. A subset P of A is chosen at random. the set A is reconstructed by replacing the elements of P.A subset Q is again chosen at random. find the probability that 1 P and Q are disjoint sets

A is a set conaining n elements. A subset P of A is chosen at random. the set A is reconstructed by replacing the elements of P.A subset Q is again chosen at random. find the probability that

1 P and Q are disjoint sets

Grade:NULL

1 Answers

jitender lakhanpal
62 Points
7 years ago

hi srinivas

 

first let us find out the sample space

S.S = no. of ways in which we can form set A and no of ways in which we can form set B

it is 2 n  in both the cases (  nC0 + n C 1 + n C 2 + ............  nCn )

nC0 when the subset is null set   , nC 1 when the subset contains 1 element it goes on when the subset contains all the

elements of the superset

 

so sample space = 2 n       *    2 n       = 4 n   

now no of favourable ways

 

when P  subset  contains no element  and Q subset contains n elements

P subset contains 1 element and  Q subsets contains n - 1 elements 

.

P subset contains r elements and Q subset contains n - r elements

..

p subset contains n elements and  Q subset contains no element

nr=0 nCr (2)(n-r)=(3)n

 

so the probability is (3/4) n

 

 

 

 

 

 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free