Flag Algebra> sequence and series...
question mark

If Sn= 1.2/3!+2.22/4!+3.23/5!....upto nterms find lim n tends to infinity of Sn

Athinarayanan Ameraj , 11 Years ago
Grade 12
anser 5 Answers
Arun Kumar

Last Activity: 10 Years ago

Hi

Thanks & Regards, Arun Kumar, Btech,IIT Delhi, Askiitians Faculty

Arun Kumar

Last Activity: 10 Years ago

Hi
little correction

Thanks & Regards, Arun Kumar, Btech,IIT Delhi, Askiitians Faculty

Koyena Basu

Last Activity: 7 Years ago

The correct answer is 1e^x = 1 + x + x^2/2! + x^3/3! + ...Dividing by x^2:e^x/x^2=1/x^2 + 1/x + 1/2! + x/3! +...Differentiating above expression and then multiplying the same by x, we get :-2x/x^3 - x/x^2 + 0 + Sn Thus, Sn = x* d(e^x/x^2)/dx + 2/x^2 + 1/xSn= 1/2+1/2+ 2e^x(x-2)/x^3Thus Sn = 1+0=1Hope it helps

jagdish singh singh

Last Activity: 7 Years ago

\hspace{-0.70 cm}$ Let $S_{n} = \lim_{n\rightarrow \infty}\sum^{n}_{r=0}\frac{r\cdot 2^r}{(r+2)!} = \lim_{n\rightarrow \infty}\frac{1}{2}\sum^{n}_{r=0}\bigg[\frac{((r+2)-2)\cdot 2^{r+1}}{(r+2)!}\bigg]$\\\\\\ So $\displaystyle S_{n}=\lim_{n\rightarrow \infty}\frac{1}{2}\sum^{n}_{r=1}\left[\frac{2^{r+1}}{(r+1)!}-\frac{2^{r+2}}{(r+2)!}\right]$\\\\ So Using Telescoping Sum, We get $\displaystyle S_{n} = \lim_{n\rightarrow \infty}\frac{1}{2}\bigg[1-\frac{2^{n+2}}{(n+2)!}\bigg] = \frac{1}{2}.$

jagdish singh singh

Last Activity: 7 Years ago

Sorry in last step , actually it is 1......................................................................
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...