Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Find the two numbers whose sum is 15 and the square of one multiplied by the cube of the other is maximum.

Find the two numbers whose sum is 15 and the square of one


multiplied by the cube of the other is maximum.

Grade:12

2 Answers

Ashwin Muralidharan IIT Madras
290 Points
9 years ago

Hi Shaleen.

 

Lets consider the two numbers to be x,y (both greater than 0).

 

So x+y = 15

Now to maximise T = x^2 * y^3

So T = y^3 (15-y)^2 = y^3 { 225 + y^2 - 30y)

So T = 225y^3 + y^5 - 30y^4.

 

Now maximise this using dT/dy = 0.

Clearly y=0 will not maximise "T".

Hence y(2y-30) + 3 { 225 + y^2 - 30y } = 0.

 

Solve this QE, for y value (for which the maximum occurs).

 

Hope that helps.

 

Best Regards,

Ashwin (IIT Madras).

Swapnil Saxena
102 Points
9 years ago

Algorithm:

First form a equations i. x+y=15 ----(1) and (x^2)(y^3) is maximum

Now take the value of x from equation  (1).

=((15-y)2)(y3)

=(225+y2-30y)(y3)

=(225y3 +y5 -30y4 )

Now differentiate in terms of y and putting it equal to 0 which is the slope of the graph at the maxima or minima

0=675y2+5y4-120y3

0=5y2(y2-24y+135)

y2-24y+135=0

The above equation are satisfied only at 15,9

At 15,0 it is at the minima, So y=9 and x=6 must be the correct answers

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free