Ramesh V
Last Activity: 15 Years ago
f(n)=1!+2!+......n! n belongs to natural numbers.
f(n+2)= P(n)f(n+1)+Q(n)f(n)
1!+2!+......+n!+(n+1)!+(n+2)! = P(n)*[1!+2!+......+n!+(n+1)!] + Q(n)*[1!+2!+......+n!]
= [1!+2!+......+n!]* + P(n)*(n+1)!
on comparing both sides, we have [P(n)+Q(n)] = 1
and P(n)*(n+1)! = (n+1)!+(n+2)! = (n+1)! * (n+3)
P(n)=n+3
Q(n)=-n-2
--
Regards
Ramesh