Siddharth Arora
Last Activity: 15 Years ago
Given equation is
(x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0
On simplification, equation changes to
x2 - (b + c)x + bc + x2 - (c + a)x + ca + x2 - (a +b)x + ab = 0
3x2 - (2a + 2b + 2c)x + (ab + bc + ca) = 0
3x2 - 2(a + b + c)x + (ab + bc + ca) = 0
On comparing the above equation with Ax2 + Bx + C = 0,
A = 3, B = -2(a + b + c), C = (ab + bc + ca)
Since roots are equal
Discriminant D = 0
B2 - 4AC = 0
[-2(a + b + c)]2 - 4(3)(ab + bc + ca) = 0
4(a + b+ c)2 -12(ab + bc + ca) = 0
4(a2 + b2 + c2 + 2ab + 2bc + 2ca) - 12ab -12bc -12ca = 0
4a2 + 4b2 + 4c2 + 8ab + 8bc + 8ca - 12ab -12bc -12ca = 0
4a2 + 4b2 + 4c2 - 4ab -4bc -4ca = 0
4(a2 + b2 + c2 - ab -bc -ca) = 0
Dividing both sides by 4
a2 + b2 + c2 - ab -bc -ca= 0
Hence answer is option D - None of these