Flag Algebra> quadratic...
question mark

Q1. If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal , then a) a+B+C=0b) a+b(omega)+c(omega)square=0c) a-b+c=0d) none ofd these

anurag singhal , 15 Years ago
Grade
anser 2 Answers
Siddharth Arora

Last Activity: 15 Years ago

Given equation is

(x - b)(x - c) + (x - c)(x - a) + (x - a)(x - b) = 0

On simplification, equation changes to

x2 - (b + c)x + bc + x2 - (c + a)x + ca + x2 - (a +b)x + ab = 0

3x2 - (2a + 2b + 2c)x + (ab + bc + ca) = 0

3x2 - 2(a + b + c)x + (ab + bc + ca) = 0

On comparing the above equation with Ax2 + Bx + C = 0,

A = 3, B = -2(a + b + c), C = (ab + bc + ca)

Since roots are equal

Discriminant D = 0

      B2 - 4AC = 0

[-2(a + b + c)]2 - 4(3)(ab + bc + ca) = 0

4(a + b+ c)2 -12(ab + bc + ca) = 0

4(a2 + b2 + c2 + 2ab + 2bc + 2ca) - 12ab -12bc -12ca = 0

4a2 + 4b2 + 4c2 + 8ab + 8bc + 8ca - 12ab -12bc -12ca = 0

4a2 + 4b2 + 4c2 - 4ab -4bc -4ca = 0

4(a2 + b2 + c2 - ab -bc -ca) = 0

Dividing both sides by 4

a2 + b2 + c2 - ab -bc -ca= 0

 

Hence answer is option D - None of these

 

Pavan kumar

Last Activity: 15 Years ago

(x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0

On simplification, we get

3x^2 -2(a+b+c)x + (ab+bc+ca) = 0.

Roots are equal implying that D = 0.

i.e 4(a+b+c)^2 -4(3)(ab+bc+ca) = 0

or, 4[a^2 + b^2 +c^2 +2(ab+bc+ca) -3(ab+bc+ca)]=0

or, 4[a^2 + b^2 + c^2 -ab-bc-ca]=0

or, 2[2a^2 + 2b^2 +2c^2 - 2ab -2bc-2ca]=0

or, (a^2 + b^2 -2ab) + (b^2 + c^2 -2bc) + (c^2 + a^2 -2ac)=0

i.e (a-b)^2 + (b-c)^2 + (c-a)^2 = 0

This is true only if all three terms are zero.

Hence a=b=c.

Now option B becomes a( 1+omega + omega(squared) ) = a*0 = 0.

Hence option B is correct.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...