Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

If β is such that sin2 β is not equals to zero, then show that the expression [x 2 +2x cos2α+1] / [x 2 +2x cosβ +1 ] for x belonging to R always lie between cos 2 α / cos 2 β and sin 2 α/sin 2 β.

If   β is such that sin2 β is not equals to zero, then show that the expression


[x2+2x cos2α+1]   / [x2+2x cosβ +1 ] for x belonging to R always lie between cos2α / cos2β  and sin2α/sin2β.


 


 

Grade:12

2 Answers

Ramesh V
70 Points
11 years ago

Lets take y=[x2+2x cos2α+1]/[x2+2x cos2β +1] for x belonging to R

so, its [x2+2x cos2α+1] - y*[x2+2x cos2β +1] = 0

       (1-y)x2+2x(cos2α-cos2β)+(1-y) = 0

       the equation has real roots, when discriminant os positive

i.e., (cos2α-cos2β)2 - (1-y)2 > 0

      [(cos2α-cos2β)+(1-y)].[(cos2α-cos2β)-(1-y)] > 0

       [ y(1+cos2β)-(1+cos2α) ].[ y(1-cos2β)-(1-cos2α) ] < 0

           (1+cos2α)/(1+cos2β)  <  y  <  (1-cos2α)/(1-cos2β)

 so, y always lie between cos2α/cos2β < y < sin2α/sin2β.

--

Please feel free to post as many doubts on our disucssion forum as you can. If you find any question difficult to understand - post it
here and we will get you the answer and detailed solution very quickly.We are all IITians and here to help you in your IIT JEE
preparation. All the best.

Regards,
Ramesh
IIT Kgp - 05 batch



mycroft holmes
272 Points
11 years ago

The given expression can be written as 1 + 2(cos 2A - cos 2B)/(x + 1/x + 2 cos 2B)

 

Since x + 1/x >= 2 or <= -2, we have  1/(cos 2B -1) <= 1/(x+1/x + 2 cos 2B) <= 1/2(1+cos 2B)

 

Hence 2(cos 2A - cos 2B)/(x + 1/x + 2 cos 2B) lies between 2(cos 2A - cos 2B)/2(1+cos 2B) and 2(cos 2A - cos 2B)/2(cos 2B-1)

 

so that 1 + 2(cos 2A - cos 2B)/(x + 1/x + 2 cos 2B) lies between 2(1+cos 2A)/2(1+cos 2B) and 2(1-cos 2A)/2(1-cos 2B) i.e.

 

between cos2A/cos2B and sin2A/sin2B

 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free