badge image

Enroll For Free Now & Improve Your Performance.

User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.

Use Coupon: CART20 and get 20% off on all online Study Material

Total Price: Rs.

There are no items in this cart.
Continue Shopping
Grade: 12


I wonder how could I solve a biquadratic equations of general structure "ax^4+bx^3+cx^2+dx+e" . Can any one of you pls help me.

11 years ago

Answers : (3)

Askiitian.Expert Rajat
24 Points

Solving a quartic equation

Special cases

Consider the quartic

Q(x) = a_4x^4+a_3x^3+a_2x^2+a_1x+a_0.\,




Q(0) = 0\,,

so zero is a root. To find the other roots, we can divide by x\, and solve the resultin cubic equation


Evident roots: 1 and −1 and −k




    Q(1) = 0\,,    

so 1 is a root. Similarly, if


that is,


then -1 is a root.

When 1 is a root, we can divide

Q(x)\, by x-1\,

and get

Q(x) = (x - 1)p(x),\,

where p(x)\, is a cubic polynomial, which may be solved to find Q\, 's other roots. Similarly, if -1 is a root,

Q(x) = (x + 1)p(x),\,

where p(x)\, is some cubic polynomial.


a_2 = 0, a_3 = ka_4, a_0 = ka_1,\,

then −k is a root and we can factor out x+k\,,

\begin{align} Q(x) &=a_4 x^4 + k a_4 x^3 + a_1 x + ka_1 \&=(x + k)a_4x^3 + (x + k)a_1 \&=(x + k)(a_4x^3 + a_1). \end{align}

And if

a_0=0, a_3=ka_4, a_1 = ka_2,\,

then both 0\, and -k\, are roots Now we can factor out x(x + k)\, and get

\begin{align} Q(x) &=x(a_4x^3+ka_4x^2+a_2x+ka_2) \&=x(x+k)(a_4x^2+a_2). \end{align}

To get Q 's other roots, we simply solve the quadratic factor.

Biquadratic equations

If a_3=a_1=0,\, then

Q(x) = a_4x^4+a_2x^2+a_0.\,\!

We call such a polynomial a biquadratic, which is easy to solve.

Let z=x^2.\, Then Q becomes a quadratic q in z,

q(z) = a_4z^2+a_2z+a_0.\,\!

Let z_+\, and z_-\, be the roots of q. Then the roots of our quartic Q are

\begin{align} x_1&=+\sqrt{z_+}, \x_2&=-\sqrt{z_+}, \x_3&=+\sqrt{z_-}, \x_4&=-\sqrt{z_-}. \end{align}

Quasi-symmetric equations

a_0x^4+a_1x^3+a_2x^2+a_1 m x+a_0 m^2=0 \,


1) Divide by x 2.

2) Use variable change z = x + m/x.

The general case, along Ferrari's lines

To begin, the quartic must first be converted to a depressed quartic.

Converting to a depressed quartic


 A x^4 + B x^3 + C x^2 + D x + E = 0 \qquad\qquad(1')

be the general quartic equation which it is desired to solve. Divide both sides by A,

 x^4 + {B \over A} x^3 + {C \over A} x^2 + {D \over A} x + {E \over A} = 0.

The first step should be to eliminate the x3 term. To do this, change variables from x to u, such that

 x = u - {B \over 4 A} .


 \left( u - {B \over 4 A} \right)^4 + {B \over A} \left( u - {B \over 4 A} \right)^3 + {C \over A} \left( u - {B \over 4 A} \right)^2 + {D \over A} \left( u - {B \over 4 A} \right) + {E \over A} = 0.

Expanding the powers of the binomials produces

 \left( u^4 - {B \over A} u^3 + {6 u^2 B^2 \over 16 A^2} - {4 u B^3 \over 64 A^3} + {B^4 \over 256 A^4} \right) + {B \over A} \left( u^3 - {3 u^2 B \over 4 A} + {3 u B^2 \over 16 A^2} - {B^3 \over 64 A^3} \right) + {C \over A} \left( u^2 - {u B \over 2 A} + {B^2 \over 16 A^2} \right) + {D \over A} \left( u - {B \over 4 A} \right) + {E \over A} = 0.

Collecting the same powers of u yields

 u^4 + \left( {-3 B^2 \over 8 A^2} + {C \over A} \right) u^2 + \left( {B^3 \over 8 A^3} - {B C \over 2 A^2} + {D \over A} \right) u + \left( {-3 B^4 \over 256 A^4} + {C B^2 \over 16 A^3} - {B D \over 4 A^2} + {E \over A} \right) = 0.

Now rename the coefficients of u. Let

\begin{align} \alpha & = {-3 B^2 \over 8 A^2} + {C \over A} ,\\beta & = {B^3 \over 8 A^3} - {B C \over 2 A^2} + {D \over A} ,\\gamma & = {-3 B^4 \over 256 A^4} + {C B^2 \over 16 A^3} - {B D \over 4 A^2} + {E \over A} . \end{align}

The resulting equation is

 u^4 + \alpha u^2 + \beta u + \gamma = 0 \qquad \qquad (1)

which is a depressed quartic equation.

If \beta=0 \ then we have a biquadratic Equation, which (as explained above) is easily solved; using reverse substitution we can find our values for x.

If \gamma=0 \ then one of the roots is u=0 \ and the other roots can be found by dividing by u, and solving the resulting equation,

 u^3 + \alpha u + \beta = 0 \,.

Using reverse substitution we can find our values for x.



Askiitians Expert

11 years ago
Asha Ram Gairola
13 Points
Dear Askiitians Expert, 
Many thanks for this method, I found very interesting. I belive that it could be generelized to higher degree equations too. 
3 years ago
Rishi Sharma
askIITians Faculty
614 Points
							Dear Student,
Please find below the solution to your problem.


Thanks and Regards
2 months ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies

Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution

Course Features

  • 101 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions

Ask Experts

Have any Question? Ask Experts

Post Question

Answer ‘n’ Earn
Attractive Gift
To Win!!! Click Here for details