Flag Algebra> Functions...
question mark

Let f(x)=[n+psinx], x belongs to(0,π), n belongs to Z, p is a prime number and [x] is a greatest integer less than or equal to x.The number of ponts at which f(x) is not differential is

a.p

b.p-1

c. 2p+1

d. 2p-1

Vaibhav Mathur , 15 Years ago
Grade 12
anser 2 Answers
Ramesh V

Last Activity: 15 Years ago

 

for X belongs to [0,pi] sin x lies in [0,1]

[sinx] is discontinuous at pi/2 , so not differentiable at it

and now considering [n + sin x] where sin x is just shifted by n units along Y axes , but still the values lie in ( n , n+1) and here too the curve will be discontinues/not differentiable at 1 point i.e., at pi/2

now taking p( a prime no.) into consideration,

for p=1 , we have [sinx] with 1 discontinues/not differentiable points

for p=2 , we have [2.sinx] with 3 discontinues/not differentiable points

for p=3 , we have [3.sinx] with 5 discontinues/not differentiable points

.

...

for p = p ,it follows to (2p-1) discontinues/not differentiable points

option is D

mycroft holmes

Last Activity: 15 Years ago

[n +  p sin x] = n + [p sin x].

The points of discontinuity and hence of non-differentiability are the points where p sin x is an integer. There are no other points of non-differentiability.

 

So, the points of discontinuity are when sin x = 1/p or 2/p,..., (p-1)/p each of which have two corresponding values of x and sin x = 1, which has a unique solution in the given interval.

 

That makes 2(p-1)+1 = 2p-1 solutions

 

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments