#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-5470-145

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# cos(1-i) = a+ib          (a,b are reals), then which is correcta) a=1\2(e - 1\e)cos1, b=1\2(e+ 1\e)sin1b)  a=1\2(e + 1\e)cos1, b=1\2(e - 1\e)sin1c)  a=1\2(e + 1\e)cos1, b=1\2(e+ 1\e)sin1d)  a=1\2(e - 1\e)cos1, b=1\2(e-1\e)sin1

12 years ago

we know that : e^(ix)=cos x + i sin x

so e(ix)=cos x + i sin x

e-(ix)=cos x - i sin x  where x is: A+iB

so we can write:   cos(A+iB)=1/2(ei(A+iB) +e-i(A+iB))

here A=1 and B=-1

so 1/2(ei(1-i1) +e -i(1-i1))=a+ib

1/2(ei+1 +e -i-1)=a+ib

1/2(ei.e +e-1e -i  )=a+ib where ( ei= cos 1+i sin 1)

e/2( cos 1+i sin1)+1/2e(cos 1-i sin1) = a+ ib

1/2 (ecos 1+1/e.cos1)+i/2(e.sin1-1/e.sin1) = a+ ib

equating real and imaginery parts, we'll get

a=1/2 cos 1(e+e-1)

b=1/2 sin 1(e-e-1)